Open Access
Issue |
E3S Web Conf.
Volume 566, 2024
2024 6th International Conference on Environmental Sciences and Renewable Energy (ESRE 2024)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 14 | |
Section | Wastewater Treatment and Water Resource Management | |
DOI | https://doi.org/10.1051/e3sconf/202456601007 | |
Published online | 06 September 2024 |
- Paraschiv, Paraschiv, Serban. An overview of energy intensity of drinking water production and wastewater treatment. Energy Rep. 2023 Oct;9:118–23. [CrossRef] [Google Scholar]
- Umweltbundesamt [Internet]. (2023). Öffentliche Abwasserentsorgung. Available from: https://www.umweltbundesamt.de/daten/wasser/wasserwirtschaft/oeffentliche-abwasserentsorgung#rund-10-milliarden-kubikmeter-abwasser-jahrlich [Google Scholar]
- Cedergren, Johansson, Hassel. Challenges to critical infrastructure resilience in an institutionally fragmented setting. Saf Sci. 2018 Dec;110:51–8. [CrossRef] [Google Scholar]
- Nagaraj, Mutz, Mysore Venkatesh, Riebschlaeger, Werth. A Practical Approach for Road Quality Estimation using Smartphone based Inertial Data: IMU data processing pipeline to estimate road quality. In: 2022 7th International Conference on Machine Learning Technologies (ICMLT) [Internet]. Rome Italy: ACM; (2022) [cited 2024 Jan 22]. p. 87–91. Available from: https://dl.acm.org/doi/10.1145/3529399.3529414 [Google Scholar]
- Nagaraj, Mutz, George, Bansal, Werth. A Semantic Segmentation Approach for Road Defect Detection and Quantification. In: 2022 the 5th International Conference on Machine Vision and Applications (ICMVA) [Internet]. Singapore Singapore: ACM; (2022) [cited 2024 Jan 22]. p. 8–15. Available from: https://dl.acm.org/doi/10.1145/3523111.3523113 [Google Scholar]
- Garzon Oviedo, Barrientos, Del Cerro, Alacid, Fotiadis, Rodríguez-Canosa, et al. Tracking and following pedestrian trajectories, an approach for autonomous surveillance of critical infrastructures. Ind Robot Int J. 2015 Aug 17;42(5):429–40. [CrossRef] [Google Scholar]
- Biswas, Mutz, Pimplikar, Ahmed, Werth. Sewer-AI: Sustainable Automated Analysis of Real-World Sewer Videos Using DNNs: In: Proceedings of the 12th International Conference on Pattern Recognition Applications and Methods [Internet]. Lisbon, Portugal: SCITEPRESS - Science and Technology Publications; (2023) [cited 2024 Jan 22]. p. 897–904. Available from: https://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0011709400003411 [Google Scholar]
- Alan Leigh Moore, Jr. UAV Surveillance of Critical Infrastructure, Capability and Constraints. In: International Seminars On Nuclear War And Planetary Emergencies - 49th Session. [Google Scholar]
- Mavikumbure, Wickramasinghe, Marino, Cobilean, Manic. Anomaly Detection in Critical-Infrastructures using Autoencoders: A Survey. In: IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society [Internet]. Brussels, Belgium: IEEE; (2022) [cited 2024 Jan 22]. p. 1–7. Available from: https://ieeexplore.ieee.org/document/9968505/ [Google Scholar]
- Santhosh, Dogra, Roy. Anomaly Detection in Road Traffic Using Visual Surveillance: A Survey. ACM Comput Surv. 2021 Nov 30;53(6):1–26. [CrossRef] [Google Scholar]
- Duarte, Martins, Oliveira, Fernandes, Ferreira, Alves, et al. A Review of Computational Modeling in Wastewater Treatment Processes. ACS EST Water. 2023 Aug 24;acsestwater.3c00117. [Google Scholar]
- Bernardelli, Marsili-Libelli, Manzini, Stancari, Tardini, Montanari, et al. Real-time model predictive control of a wastewater treatment plant based on machine learning. Water Sci Technol. 2020 Jun 1;81(11):2391–400. [CrossRef] [PubMed] [Google Scholar]
- Carbureanu, Mihalache, Zamfir. Machine Learning Methods Applied for Wastewater pH Neutralization Process Modeling. In: 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) [Internet]. Ploiesti, Romania: IEEE; (2022) [cited 2023 Dec 4]. p. 1–6. Available from: https://ieeexplore.ieee.org/document/9847479/ [Google Scholar]
- Torregrossa, Leopold, Hernández-Sancho, Hansen. Machine learning for energy cost modelling in wastewater treatment plants. J Environ Manage. 2018 Oct;223:1061–7. [CrossRef] [PubMed] [Google Scholar]
- Radović, Pap, Turk Sekulić. Machine learning as a support tool in wastewater treatment systems – a short review. In: Proceedings - The Eleventh International Symposium GRID 2022 [Internet]. (2022) [cited 2023 Dec 4]. p. 799–807. Available from: https://www.grid.uns.ac.rs/symposium/download/2022/89.pdf [Google Scholar]
- Sundui, Ramirez Calderon, Abdeldayem, Lázaro-Gil, Rene, Sambuu. Applications of machine learning algorithms for biological wastewater treatment: Updates and perspectives. Clean Technol Environ Policy. 2021 Jan;23(1):127–43. [CrossRef] [Google Scholar]
- Martini, Roni. The existing technology and the application of digital artificial intelligent in the wastewater treatment area: A review paper. J Phys Conf Ser. 2021 Apr 1;1858(1):012013. [CrossRef] [Google Scholar]
- Lowe, Qin, Mao. A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. Water. 2022 Apr 24;14(9):1384. [CrossRef] [Google Scholar]
- Lebreton, Slat, Ferrari, Sainte-Rose, Aitken, Marthouse, et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci Rep. 2018 Mar 22;8(1):4666. [CrossRef] [PubMed] [Google Scholar]
- Van Emmerik, Schwarz. Plastic debris in rivers. WIREs Water. 2020 Jan;7(1):e1398. [CrossRef] [Google Scholar]
- González-Fernández, Cózar, Hanke, Viejo, Morales-Caselles, Bakiu, et al. Floating macrolitter leaked from Europe into the ocean. Nat Sustain. 2021 Jun 10;4(6):474–83. [CrossRef] [Google Scholar]
- Jambeck, Geyer, Wilcox, Siegler, Perryman, Andrady, et al. Plastic waste inputs from land into the ocean. Science. 2015 Feb 13;347(6223):768–71. [CrossRef] [PubMed] [Google Scholar]
- Bellou, Gambardella, Karantzalos, Monteiro, Canning-Clode, Kemna, et al. Global assessment of innovative solutions to tackle marine litter. Nat Sustain. 2021 Jun 10;4(6):516–24. [CrossRef] [Google Scholar]
- Borrelle, Ringma, Law, Monnahan, Lebreton, McGivern, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science. 2020 Sep 18;369(6510):1515–8. [CrossRef] [Google Scholar]
- Meijer, Van Emmerik, Van Der Ent, Schmidt, Lebreton. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci Adv. 2021 Apr 30;7(18):eaaz5803. [CrossRef] [PubMed] [Google Scholar]
- Martínez, Vela, El Aatik, Murray, Roche, Navarro. On the Use of an IoT Integrated System for Water Quality Monitoring and Management in Wastewater Treatment Plants. Water. 2020 Apr 12;12(4):1096. [CrossRef] [Google Scholar]
- Gupta, Ruebush. AquaSight: Automatic Water Impurity Detection Utilizing Convolutional Neural Networks [Internet]. arXiv; (2019) [cited 2023 Dec 4]. Available from: http://arxiv.org/abs/1907.07573 [Google Scholar]
- Van Lieshout, Van Oeveren, Van Emmerik, Postma. Automated River Plastic Monitoring Using Deep Learning and Cameras. Earth Space Sci. 2020 Aug;7(8):e2019EA000960. [CrossRef] [Google Scholar]
- Armitage, Awty-Carroll, Clewley, Martinez-Vicente. Detection and Classification of Floating Plastic Litter Using a Vessel-Mounted Video Camera and Deep Learning. Remote Sens. 2022 Jul 16;14(14):3425. [CrossRef] [Google Scholar]
- Jia, Kapelan, De Vries, Vriend, Peereboom, Okkerman, et al. Deep learning for detecting macroplastic litter in water bodies: A review. Water Res. 2023 Mar;231:119632. [CrossRef] [PubMed] [Google Scholar]
- Zhu, Wang, Yang, Zhang, Zhang, Ren, et al. A review of the application of machine learning in water quality evaluation. Eco-Environ Health. 2022 Jun;1(2):107–16. [CrossRef] [Google Scholar]
- Pang, Yang, He, Chen, Cao, Zhao, et al. An influent responsive control strategy with machine learning: Q-learning based optimization method for a biological phosphorus removal system. Chemosphere. 2019 Nov;234:893–901. [CrossRef] [PubMed] [Google Scholar]
- Roscher, Bohn, Duarte, Garcke. Explainable Machine Learning for Scientific Insights and Discoveries. IEEE Access. 2020;8:42200–16. [NASA ADS] [CrossRef] [Google Scholar]
- Thornton, Hutter, Hoos, Leyton-Brown. Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining [Internet]. Chicago Illinois USA: ACM; (2013) [cited 2024 Jan 22]. p. 847–55. Available from: https://dl.acm.org/doi/10.1145/2487575.2487629 [Google Scholar]
- Tuggener, Amirian, Rombach, Lorwald, Varlet, Westermann, et al. Automated Machine Learning in Practice: State of the Art and Recent Results. In: 2019 6th Swiss Conference on Data Science (SDS) [Internet]. Bern, Switzerland: IEEE; (2019) [cited 2024 Jan 22]. p. 31–6. Available from: https://ieeexplore.ieee.org/document/8789865/ [Google Scholar]
- Mahmoud, Ismail, Mostafa, Mahmoud, Ali, Shawky. Isotherm and kinetic studies for heptachlor removal from aqueous solution using Fe/Cu nanoparticles, artificial intelligence, and regression analysis. Sep Sci Technol. 2020 Mar 3;55(4):684–96. [CrossRef] [Google Scholar]
- Zhu, Wang, Shu, Takala, Hiltunen, Feng, et al. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res. 2013 Sep;47(13):4294–302. [CrossRef] [PubMed] [Google Scholar]
- Liu, Zhang, Zhang, Li, Li. Performance, carotenoids yield and microbial population dynamics in a photobioreactor system treating acidic wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR). Bioresour Technol. 2016 Jan;200:245–52. [CrossRef] [PubMed] [Google Scholar]
- Zhang, Hong. Effects of stationary phase elongation and initial nitrogen and phosphorus concentrations on the growth and lipid-producing potential of Chlorella sp. HQ. J Appl Phycol. 2014 Feb;26(1):141–9. [Google Scholar]
- Supriyanto, Noguchi, Ahamed, Mikihide, Watanabe. A Decision Tree Approach to Estimate the Microalgae Production in Open Raceway Pond. IOP Conf Ser Earth Environ Sci. 2018 Dec 19;209:012050. [CrossRef] [Google Scholar]
- Tennakoon, Hoseinnezhad, Tran, Bab-Hadiashar. Visual Inspection of Storm-Water Pipe Systems using Deep Convolutional Neural Networks: In: Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics [Internet]. Porto, Portugal: SCITEPRESS - Science and Technology Publications; (2018) [cited 2023 Dec 4]. p. 135–40. Available from: http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006851001350140 [Google Scholar]
- Chiaburu, Biessmann. Interpretable Time Series Models for Wastewater Modeling in Combined Sewer Overflows [Internet]. arXiv; (2024) [cited 2024 Jan 25]. Available from: http://arxiv.org/abs/2401.02465 [Google Scholar]
- Koizumi, Yasuda, Murata, Saito, Uematsu, Harada. SPIDERnet: Attention Network For One-Shot Anomaly Detection In Sounds. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) [Internet]. Barcelona, Spain: IEEE; (2020) [cited 2024 Jan 30]. p. 281–5. Available from: https://ieeexplore.ieee.org/document/9053620/ [Google Scholar]
- Li, Qiu, Kloft, Smyth, Rudolph, Mandt. Zero-Shot Anomaly Detection via Batch Normalization. 2023 [cited 2024 Jan 30]; Available from: https://arxiv.org/abs/2302.07849 [Google Scholar]
- Tan, Sun, Kong, Zhang, Yang, Liu. A Survey on Deep Transfer Learning. In: Kůrková V, Manolopoulos Y, Hammer B, Iliadis L, Maglogiannis I, editors. Artificial Neural Networks and Machine Learning – ICANN 2018 [Internet]. Cham: Springer International Publishing; (2018) [cited 2024 Jan 25]. p. 270–9. (Lecture Notes in Computer Science; vol. 11141). Available from: http://link.springer.com/10.1007/978-3-030-01424-7_27 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.