Open Access
Issue
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
Article Number 01001
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202456701001
Published online 09 September 2024
  1. Dychkovskyi, R., Saik, P., Sala, D., & Cabana, E.C. (2024). The current state of the non-ore mineral deposits mining in the concept of the Ukraine reconstruction in the post-war period. Mineral Economics. https://doi.org/10.1007/s13563-024-00436-z [Google Scholar]
  2. Beshta, O., Cichoń, D., Beshta, O., Khalaimov, T., & Cabana, E.C. (2023). Analysis of the use of rational electric vehicle battery design as an example of the introduction of the fit for 55 package in the real estate market. Energies, 16(24), 7927. https://doi.org/10.3390/en16247927 [CrossRef] [Google Scholar]
  3. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A., & Cabana, E. (2021). Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web of Conferences, (230), 01023. https://doi.org/10.1051/e3sconf/202123001023 [CrossRef] [EDP Sciences] [Google Scholar]
  4. Fedoreiko, V.S., Lutsyk, I.B., Iskerskyi, I.S., & Zagorodnii, R.I. (2014). Increase of energy efficiency of heat generator through batching components of burning. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 27–32. [Google Scholar]
  5. Polyanska, A., Pazynich, Y., Mykhailyshyn, K., Babets, D., & Toś, P. (2024). Aspects of energy efficiency management for rational energy resource utilization. Rudarsko-Geološko-Naftni Zbornik, 39(3), 13–26. https://doi.org/10.17794/rgn.2024.3.2 [CrossRef] [Google Scholar]
  6. Dychkovskyi, R., Shavarskyi, J., Cabana, E.C., & Smoliński, A. (2019). Characteristic of Possible obtained products during the well underground coal gasification. Solid State Phenomena, (291), 52–62. https://doi.org/10.4028/www.scientific.net/ssp.291.52 [CrossRef] [Google Scholar]
  7. Bazaluk, O., Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., & Cabana, E. (2021). Experimental studies of the effect of design and technological solutions on the intensification of an underground coal gasification process. Energies, 14(14), 4369. https://doi.org/10.3390/en14144369 [CrossRef] [Google Scholar]
  8. Koveria, A., Kieush, L., Usenko, A., & Sova, A. (2023). Study of cellulose additive effect on the caking properties of coal. Mining of Mineral Deposits, 17(2), 1–8. https://doi.org/10.33271/mining17.02.001 [CrossRef] [Google Scholar]
  9. Bondarenko, V., Dychkovskiy, R., & Falshtynskiy, V. (2009). Synthetic stowing of rock mass at borehole underground coal gasification (BUCG). Deep Mining Challenges, 169–177. https://doi.org/10.1201/noe0415804288.ch18 [CrossRef] [Google Scholar]
  10. Saik, P., Dychkovskyi, R., Lozynskyi, V., Falshtynskyi, V., & Ovcharenko, A. (2024). Achieving climate neutrality in coal mining regions through the underground coal gasification. E3S Web of Conferences, (526), 01004. https://doi.org/10.1051/e3sconf/202452601004 [CrossRef] [EDP Sciences] [Google Scholar]
  11. Beshta, O., Fedoreyko, V., Palchyk, A., & Burega, N. (2015). Independent power supply of menage objects based on biosolid oxide fuel systems. Power Engineering, Control and Information Technologies in Geotechnical Systems, 33–39. https://doi.org/10.1201/b18475-6 [Google Scholar]
  12. Fedoreiko, V.S., Luchko, M.R., Iskerskyi, I.S., & Zahorodnii, R.I. (2019). Enhancing the efficiency of energy generation systems based on solid biofuels: technical and economic aspects. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 94–100. https://doi.org/10.29202/nvngu/2019-2/14 [CrossRef] [Google Scholar]
  13. Polyanska, A., Savchuk, S., Dudek, M., Sala, D., Pazynich, Y., & Cicho, D. (2022). Impact of digital maturity on sustainable development effects in energy sector in the condition of Industry 4.0. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 97–103. https://doi.org/10.33271/nvngu/2022-6/097 [CrossRef] [Google Scholar]
  14. Dutta, T., & Yasmin, A. (2023). A chemical approach towards the sustainability of biofuels: Environmental and economic aspects. Environmental Sustainability of Biofuels, 349–362. https://doi.org/10.1016/b978-0-323-91159-7.00004-7 [CrossRef] [Google Scholar]
  15. Buktukov, N.S., Gumennikov, Y.S., Moldabayeva, G.Z., Buktukov, B.Z., & Yesbergenova, E.S. (2024). New solutions for mechanized small diameter shaft sinking for residual oil production. SOCAR Proceedings, (1), 81–86. https://doi.org/10.5510/OGP20240100944 [CrossRef] [Google Scholar]
  16. Falshtynskyi, V., Lozynskyi, V., Saik, P., Dychkovskyi, R., & Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Mining of Mineral Deposits, 10(1), 16–24. http://dx.doi.org/10.15407/mining10.01.016 [CrossRef] [Google Scholar]
  17. Fedoreiko, V.S., Zahorodnii, R.I., Lutsyk, I.B., & Rutylo, M.I. (2017). Modeling of block of electricity generation of cogeneration system for heat generator. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 87–92. [Google Scholar]
  18. Polyanska, A., Pazynich, Y., Sabyrova, M., & Verbovska, L. (2023). Directions and prospects of the development of educational services in conditions of energy transformation: the aspect of the coal industry. Polityka Energetyczna – Energy Policy Journal, 26(2), 195–216. https://doi.org/10.33223/epj/162054 [CrossRef] [Google Scholar]
  19. Sala, D., & Bieda, B. (2022). Stochastic approach based on Monte Carlo (MC) simulation used for Life Cycle Inventory (LCI) uncertainty analysis in Rare Earth Elements (REEs) recovery. E3S Web of Conferences, (349), 01013. https://doi.org/10.1051/e3sconf/202234901013 [CrossRef] [EDP Sciences] [Google Scholar]
  20. Meullenet, J., Marks, B. P., Hankins, J., Griffin, V. K., & Daniels, M. J. (2000). Sensory quality of cooked long‐grain rice as affected by rough rice moisture content, storage temperature, and storage duration. Cereal Chemistry, 77(2), 259–263. Portico. https://doi.org/10.1094/cchem.2000.77.2.259 [CrossRef] [Google Scholar]
  21. Prakhovnyk, A.V., Popov, V.A., Yarmolyuk, E.S. & Kokorina, M.T. (2012). Prospects and development paths of distributed generation in Ukraine. Collection of Kyiv Polytechnic Institute, (2), 7–14. [Google Scholar]
  22. Korchemnyi, M., Fedoreiko, V., & Shcherban, V. (2001). Energy Saving in the Agro-Industrial Complex. Ternopil: Textbooks and Manuals, 192 p. [Google Scholar]
  23. Fedoreiko, V.S., & Iskerskyi, I.S. (2017). Decentralized Systems of Heat and Electricity Generation in Bioresource Technologies. Scientific Bulletin of the National University of Bioresources and Nature Management of Ukraine, series “Machinery and Energy of the AgroIndustrial Complex”, (261), 52–56. [Google Scholar]
  24. Kalinichenko, R., & Voytyuk, V. (2017). Mathematical modeling of teplomassexchange processes of higherature thermo-processing of grain materials. Scientific Herald of NULES of Ukraine. Series: Technique and Energy of APK, (275), 59–67. [Google Scholar]
  25. Fedoreiko, V., Horbatiuk, R., Iskerskyi, I., Rutylo, M., Bureha, N., & Zahorodnyi, R. (2022). Technologies of Bioresource Diversification of Energy Sources Based on Generator-Utilizers. Ternopil: Editorial and Publishing Department of Ternopil Volodymyr Hnatiuk National Pedagogical University, 288 p. [Google Scholar]
  26. Deviany, D., & Chaerun, S.K. (2024). Limitations of the First‐ and Second‐Generation Solid‐Gaseous Biofuels in a Time of Climate Emergency. Solid‐Gaseous Biofuels Production, 229–243. Portico. https://doi.org/10.1002/9781394204816.ch9 [CrossRef] [Google Scholar]
  27. Hammami, F., Ben Mabrouk, S., & Mami, A. (2016). Modelling and simulation of heat exchange and moisture content in a cereal storage silo. Mathematical and Computer Modelling of Dynamical Systems, 22(3), 207–220. https://doi.org/10.1080/13873954.2016.1157823 [CrossRef] [Google Scholar]
  28. Lozynskyi, V. (2023). Critical review of methods for intensifying the gas generation process in the reaction channel during underground coal gasification (UCG). Mining of Mineral Deposits, 17(3), 67–85. https://doi.org/10.33271/mining17.03.067 [CrossRef] [Google Scholar]
  29. Vladyko, O., Maltsev, D., Cabana, E. C., Shavarskyi, I., & Dychkovskyi, R. (2022). Formation of the models of mining enterprise management. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 30–36. https://doi.org/10.33271/nvngu/2022-3/030 [CrossRef] [Google Scholar]
  30. Dychkovskyi, R., Falshtynskyi, V., Ruskykh, V., Cabana, E., & Kosobokov, O. (2018). A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, (60), 00014. https://doi.org/10.1051/e3sconf/20186000014 [CrossRef] [EDP Sciences] [Google Scholar]
  31. Sala, D., & Bieda, B. (2022). Application of uncertainty analysis based on Monte Carlo (MC) simulation for life cycle inventory (LCI). Inżynieria Mineralna, 2(2). https://doi.org/10.29227/im2019-02-80 [Google Scholar]
  32. Modarresi, J. (2022). Coalitional game theory approach for multi-microgrid energy systems considering service charge and power losses. Sustainable Energy, Grids and Networks, (31), 100720. https://doi.org/10.1016/j.segan.2022.100720 [CrossRef] [Google Scholar]
  33. Beshta, O.S. (2012). Electric drives adjustment for improvement of energy efficiency of technological processes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 98–107. [Google Scholar]
  34. Fedoreiko, V.S., Rutylo, M.I., Iskerskyi, I.S., & Zahorodnii, R.I. (2020). Optimization of heat production processes in the biofuel vortex combustion systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 83–88. https://doi.org/10.33271/nvngu/2020-6/083 [CrossRef] [Google Scholar]
  35. Rusanov, A.V., Kostikov, A.O., Shubenko, O.L., Kharlampidi, D.Kh., Tarasova, V.O., & Senetskyi, O.V. (2019). Highly efficient cogeneration power plant with deep regeneration based on air Brayton cycle. Journal of Mechanical Engineering, 22(4), 12–23. https://doi.org/10.15407/pmach2019.04.012 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.