Open Access
Issue
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
Article Number 01016
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202456701016
Published online 09 September 2024
  1. Johanson, J. R. (1972). Bins and Bunkers for Handling Bulk Materials. Engineering Geology, 6(2), 154. https://doi.org/10.1016/0013-7952(72)90037-3 [CrossRef] [Google Scholar]
  2. Nguyen, P.M.V., Rotkegel, M., & Van, H.D. (2020). Analysis of behaviour of the steel arch support in the geological and mining conditions of the Cam Pha coal Basin, Vietnam. Archives of Mining Sciences, 65(3), 551–567. https://doi.org/10.24425/ams.2020.134134 [Google Scholar]
  3. Sladkowski, A., Utegenova, A., Elemesov, K., & Stolpovskikh, I. (2017). Determining of the rational capacity of a bunker for cyclic-and-continuous technology in quarries. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 29–33. [Google Scholar]
  4. Dudek, M. (2012). Utilisation of simulation modelling to coordinate of distributed logistic resources. Congress Proceedings – CLC 2012: Carpathian Logistics Congress, 151–159. [Google Scholar]
  5. Rotkegel, M., Szot, L., & Fabich, S. (2020). The analysis of selected methods of the yielding of a circular arch support made of V profiles. Archives of Mining Sciences, 65(3), 531–550. https://doi.org/10.24425/ams.2020.134133 [Google Scholar]
  6. Dychkovskiy, R., & Bondarenko, V. (2006). Methods of extraction of thin and rather thin coal seams in the works of the scientists of the Underground Mining Faculty (National Mining University). International Mining Forum 2006, New Technological Solutions in Underground Mining, 21–25. https://doi.org/10.1201/noe0415401173.ch3 [CrossRef] [Google Scholar]
  7. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, (10), 878977. https://doi.org/10.3389/fenvs.2022.878977 [CrossRef] [Google Scholar]
  8. Dyczko, A. (2007). Thin coal seams, their role in the reserve base of Poland. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2007, 81–87. https://doi.org/10.1201/noe0415436700.ch10 [CrossRef] [Google Scholar]
  9. Piwniak, G.G., Bondarenko, V.I., Salli, V.I., Pavlenko, I.I., & Dychkovskiy, R.O. (2007). Limits to economic viability of extraction of thin coal seams in Ukraine. Technical, Technological and Economic Aspects of Thin-Seams Coal Mining, 129–132. https://doi.org/10.1201/noe041543670a0.ch16 [Google Scholar]
  10. Wang, J., Apel, D.B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2021). Investigation of the rockburst mechanism of driving roadways in close-distance coal seam mining using numerical modeling method. Mining, Metallurgy & Exploration, 38(5), 1899–1921. https://doi.org/10.1007/s42461-021-00471-2 [CrossRef] [Google Scholar]
  11. Vlasov, S., Moldavanov, Y., Dychkovskyi, R., Cabana, E., Howaniec, N., Widera, K., & Smoliński, A. (2022). A generalized view of longwall emergency stop prevention (Ukraine). Processes, 10(5), 878. https://doi.org/10.3390/pr10050878 [CrossRef] [Google Scholar]
  12. Wu, C. (2011). Evaluation on high temperature stability performance of asphalt mixture by parameters of GTM test. Emerging Technologies for Material, Design, Rehabilitation, and Inspection of Roadway Pavements, (26), 231–239. https://doi.org/10.1061/47629(408)29 [CrossRef] [Google Scholar]
  13. Kopacz, M., Kulpa, J., Galica, D., Dyczko, A., & Jarosz, J. (2019). Economic valuation of coal deposits – The value of geological information in the resource recognition process. Resources Policy, (63), 101450. https://doi.org/10.1016/j.resourpol.2019.101450 [CrossRef] [Google Scholar]
  14. Janoszek, T., & Rotkegel, M. (2024). Coupled CFD-FEM analysis of the damage causes of the retention bunker: a case study at hard coal mine. Scientific Reports, 14(1), 20. https://doi.org/10.1038/s41598-024-65034-z [CrossRef] [PubMed] [Google Scholar]
  15. Prusek, S., Rotkegel, M., & Małecki, Ł. (2014). Laboratory tests and numerical modelling of strength-deformation parameters of a shotcrete lining. Engineering Structures, (75), 353–362. https://doi.org/10.1016/j.engstruct.2014.06.020 [CrossRef] [Google Scholar]
  16. Vladyko, O., Maltsev, D., Cabana, E. C., Shavarskyi, I., & Dychkovskyi, R. (2022). Formation of the models of mining enterprise management. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 30–36. https://doi.org/10.33271/nvngu/2022-3/030 [CrossRef] [Google Scholar]
  17. Karnowka, T., & Grzybowski, W. (2007). Rekonstrukcjaobudowy podziemnego zbiornika podziemnego zbiornika w KWK “Rydułtowy-Anna”. Górnictwo i Geoinżynieria. Zeszyt, (3), 215–223. [Google Scholar]
  18. Bock, S., Rotkegel, M., & Szymała J. (2016). Podziemne retencyjne zbiorniki węgla. Typowe uszkodzenia i metody oceny stanu technicznego. Przegląd Górniczy, (3), 39–51. [Google Scholar]
  19. Rotkegel, M., Szymała, J., Szymczak, J., & Wilczok, B. (2016). Badania stanu technicznego obudowy szybu z wykorzystaniem technik dostępu linowego na przykładzie szybika “Południowego” w KS “Kłodawa” S.A. Budownictwo Górnicze i Tunelowe, (1), 40–48. [Google Scholar]
  20. Polyanska, A., Pazynich, Y., Mykhailyshyn, K., Babets, D., & Toś, P. (2024). Aspects of energy efficiency management for rational energy resource utilization. Rudarsko-Geološko-Naftni Zbornik, 39(3), 13–26. https://doi.org/10.17794/rgn.2024.3.2 [CrossRef] [Google Scholar]
  21. Rotkegel, M., Szade, A., & Szot, Ł. (2016). Zastosowanie skaningu laserowego 2D w ocenie stanu technicznego podziemnych obiektów geoinżynieryjnych. Przegląd Górniczy, 72(6), 67–77. [Google Scholar]
  22. Shults, R., Seitkazina, G., & Soltabayeva, S. (2023). The features of sports complex “SUNKAR” monitoring by terrestrial laser scanning. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (48), 105–110. https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-105-2023 [CrossRef] [Google Scholar]
  23. Baran, B., & Dudek, M. (2009). Zasady dotyczące wykorzystania dostępu linowego w przemyśle. Organizacja Techników Dostępu Linowego, 234 p. [Google Scholar]
  24. Szczerbakowicz, M., Suchorab, N., & Król, R. (2021). Preliminary failure frequency analysis of receiving bins in retention bunkers operated in underground copper ore mines. Applied Sciences, 11(8), 3628. https://doi.org/10.3390/app11083628 [CrossRef] [Google Scholar]
  25. Bortnowski, P., Król, R., Suchorab-Matuszewska, N., Ozdoba, M., & Szczerbakowicz, M. (2024). Optimizing retention bunkers in copper mines with numerical methods and gradient descent. Applied Sciences, 14(6), 2612. https://doi.org/10.3390/app14062612 [CrossRef] [Google Scholar]
  26. Gawliczek, J., Goldstein, Z., Kajdasz, Z., & Ragus, E. (2003). Monografia ratownictwa górniczego. Tom I. Bytom, Polska: Centralna Stacja Ratownictwa Górniczego, 423 p. [Google Scholar]
  27. Bednarczyk, Ł., Jamrozy, J., & Janas, J. (2018). Strategic management of transport tasks realization of an underground transport systems working in hard coal mine. Scientific Papers of Silesian University of Technology. Organization and Management Series, 2018(132), 61–76. https://doi.org/10.29119/1641-3466.2018.132.4 [CrossRef] [Google Scholar]
  28. Buchman, K. (2013) Wspinaczka linowa. Alpinizm przemysłowy. Materiały instruktażowe Ośrodka Doskonalenia Kadr Stowarzyszenia Inżynierów i Techników Mechaników Polskich, 67. [Google Scholar]
  29. Grządziel, A., & Syty, J. (2012). Prace profilaktyczne z zastosowaniem technik alpinistycznych. Kwartalnik Ratownictwo Górnicze, 2/2012, 23–41. [Google Scholar]
  30. Portnov, V.S., Yurov, V.M., & Mausymbaeva, A.D. (2018). Influence of surface properties of minerals on rebellious ore disintegration. Journal of Mining Science, (54), 681–689. https://doi.org/10.1134/S106273911804460 [CrossRef] [Google Scholar]
  31. Duczmal-Czernikiewicz, A., Baibatsha, A., Bekbotayeva, A., Omarova, G., & Baisalova, A. (2021). Ore minerals and metal distribution in tailings of sediment-hosted stratiform copper deposits from Poland and Kazakhstan. Minerals, 11(7), 752. https://doi.org/10.3390/min11070752 [CrossRef] [Google Scholar]
  32. Syty, J. (2014). Specjalistyczne zastępy ratownicze do prac z wykorzystaniem technik alpinistycznych. Kwartalnik Ratownictwo Górnicze, 3-4/2014, 54–71. [Google Scholar]
  33. Dychkovskyi, R., Falshtynskyi, V., Ruskykh, V., Cabana, E., & Kosobokov, O. (2018). A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, (60), 00014. https://doi.org/10.1051/e3sconf/20186000014 [CrossRef] [EDP Sciences] [Google Scholar]
  34. Beshta, O., Fedoreyko, V., Palchyk, A., & Burega, N. (2015). Independent power supply of menage objects based on biosolid oxide fuel systems. Power Engineering, Control and Information Technologies in Geotechnical Systems, 33–39. https://doi.org/10.1201/b18475-6 [Google Scholar]
  35. Dreger, M. (2021). Variabilities in hard coal production and methane emission in the MysłowiceWesoła Mine. Physical and Technical Problems of Mineral Development, (3), 69–84. https://doi.org/10.15372/ftprpi20210308 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.