Open Access
Issue |
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/e3sconf/202456701017 | |
Published online | 09 September 2024 |
- Polyanska, A., Savchuk, S., Dudek, M., Sala, D., Pazynich, Y., & Cicho, D. (2022). Impact of digital maturity on sustainable development effects in energy sector in the condition of Industry 4.0. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 97–103. https://doi.org/10.33271/nvngu/2022-6/097 [CrossRef] [Google Scholar]
- Saik, P., Dychkovskyi, R., Lozynskyi, V., Falshtynskyi, V., & Ovcharenko, A. (2024). Achieving climate neutrality in coal mining regions through the underground coal gasification. E3S Web of Conferences, (526), 01004. https://doi.org/10.1051/e3sconf/202452601004 [CrossRef] [EDP Sciences] [Google Scholar]
- Dudek, M. (2012). Utilisation of simulation modelling to coordinate of distributed logistic resources. Congress Proceedings – CLC 2012: Carpathian Logistics Congress, 151–159. [Google Scholar]
- Pivnyak, G., Falshtynskyi, V., Dychkovskyi, R., Saik, P., Lozynskyi, V., Cabana, E., & Koshka, O. (2020). Conditions of suitability of coal seams for underground coal gasification. Key Engineering Materials, (844), 38–48. https://doi.org/10.4028/www.scientific.net/kem.844.38 [CrossRef] [Google Scholar]
- Bartoszek, S., Stankiewicz, K., Kost, G., Ćwikła, G., & Dyczko, A. (2021). Research on ultrasonic transducers to accurately determine distances in a coal mine conditions. Energies, 14(9), 2532. https://doi.org/10.3390/en14092532 [CrossRef] [Google Scholar]
- Polyanska, A., Cichoń, D., Verbovska, L., Dudek, Sala, D., Martynets, V. (2022). Waste management skills formation in modern conditions: the example of Ukraine. Financial and Credit Activity: Problems of Theory and Practice, 4(45), 322–334. https://doi.org/10.55643/fcaptp.4.45.2022.3814 [CrossRef] [Google Scholar]
- Falshtynskyi, V., Dychkovskyi, R., Saik, P., & Lozynskyi, V. (2014). Some aspects of technological processes control of an in-situ gasifier during coal seam gasification. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 109–112. http://www.tandfebooks.com/doi/book/10.1201/b17547 [Google Scholar]
- Lewicka, D., Zarębska, J., Batko, R., Tarczydło, B., Wożniak, M., Cichoń, D., & Pec, M. (2023). Circular economy in the European Union. Circular Economy in the European Union: Organisational Practice and Future Directions in Germany, Poland and Spain, 21–267. https://doi.org/10.4324/9781003411239 [Google Scholar]
- Polyanska, A., Pazynich, Y., Mykhailyshyn, K., Babets, D., & Toś, P. (2024). Aspects of energy efficiency management for rational energy resource utilization. Rudarsko-Geološko-Naftni Zbornik, 39(3), 13–26. https://doi.org/10.17794/rgn.2024.3.2 [CrossRef] [Google Scholar]
- Dyczko, A. (2007). Thin Coal Seams, Their Role in the Reserve Base of Poland. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2007, 81–87. https://doi.org/10.1201/noe0415436700.ch10 [CrossRef] [Google Scholar]
- Pivnyak, G., Dychkovskyi, R., Cabana, E.C., Lozynskyi, V., & Saik, P. (2020). Actual challenges in materials science and processing technologies. In Key Engineering Materials. Trans Tech Publications Ltd. https://doi.org/10.4028/b-m5hgkq [Google Scholar]
- Vlasov, S., Moldavanov, Y., Dychkovskyi, R., Cabana, E., Howaniec, N., Widera, K., Bąk, A., & Smoliński, A. (2022). A generalized view of longwall emergency stop prevention (Ukraine). Processes, 10(5), 878. https://doi.org/10.3390/pr10050878 [CrossRef] [Google Scholar]
- Kopacz, M., Kulpa, J., Galica, D., Dyczko, A., & Jarosz, J. (2019). Economic valuation of coal deposits – The value of geological information in the resource recognition process. Resources Policy, (63), 101450. https://doi.org/10.1016/j.resourpol.2019.101450 [CrossRef] [Google Scholar]
- Polyanska, A., Pazynich, Y., Sabyrova, M., & Verbovska, L. (2023). Directions and prospects of the development of educational services in conditions of energy transformation: the aspect of the coal industry. Polityka Energetyczna – Energy Policy Journal, 26(2), 195–216. https://doi.org/10.33223/epj/162054 [CrossRef] [Google Scholar]
- Ściażko, M., & Sobolewski, A. (2015). Prognozowanie jakości koksu: praca zbiorowa. Zabrze, Instytut Chemicznej Przeróbki Węgla, 243. [Google Scholar]
- Díez, M.A., Alvarez, R., & Barriocanal, C. (2002). Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking. International. Journal of Coal Geology, 50(1-4), 389–412. https://doi.org/10.1016/s0166-5162(02)00123-4 [CrossRef] [Google Scholar]
- Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
- Smędowski, Ł., & Krzesińska, M. (2013). Molecular oriented domains (MOD) and their effect on technological parameters within the structure of cokes produced from binary and ternary coal blends. International Journal of Coal Geology, (111), 90–97. https://doi.org/10.1016/j.coal.2012.08.008 [CrossRef] [Google Scholar]
- Levin, A. (2016). Hinckley freed, but judge sets numerous restrictions. Psychiatric News, 51(16), 1–1. https://doi.org/10.1176/appi.pn2016.8b18 [Google Scholar]
- Rejdak, M., Wojtaszek-Kalaitzidi, M., Gałko, G., Mertas, B., Radko, T., Baron, R., Książek, M., Yngve Larsen, S., Sajdak, M., & Kalaitzidis, S. (2022). A study on bio-coke production – the influence of bio-components addition on coke-making blend properties. Energies, (15), 1–27. https://doi.org/10.3390/en15186847 [Google Scholar]
- Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2–19. https://doi.org/10.46873/2300-3960.1371 [CrossRef] [Google Scholar]
- Specifications guide Global Metallurgical coal. Latest update: October 2023. S&P Global Platts. [Online] www.spglobal.com [Accessed: 2024-02-19]. [Google Scholar]
- PN-ISO 7404-3:2001. (2001). Metody analizy petrograficznej węgla kamiennego (bitumicznego) i antracytu, Część 3: Metoda oznaczania składu grup macerałów. Polish Committee for Standardization, Warszawa. [Google Scholar]
- Jelonek, I., Poniewiera, M., & Jelonek, Z. (2017). Modelowanie złóż w oparciu o właściwości petrograficzne kopalin stałych na przykładzie Jastrzębskiej Spółki Węglowej SA. Górnictwo Odkrywkowe, 58(2), 14–20. [Google Scholar]
- Marcisz, J., Michorczyk, P., & Burczyk, A., (2024). Prognozowanie parametrów jakości koksu określanych testem Nippon Steel Corporation z wykorzystaniem wybranych metod statystycznych i metod uczenia maszynowego. Systemy Wspomagania w Inżynierii Produkcji, 13(20), 89–99. [Google Scholar]
- Clement, J.K., Adams, L.H., & Haskins, C.N. (1909). On the rate of formation of carbon monoxide in gas producers. University of Illinois Bulletin, (30). [Google Scholar]
- Dahme, A, & Junker, H.J. (1955). Die Reaktivität von Koks gegen CO2 im temperaturbereich 1000 – 1200 ºC. Brennst Chem, (36), 193–199. [Google Scholar]
- Krzesińska M., Pusz S., & Smędowski, Ł. (2009). Characterization of the porous structure of cokes produced from the blends of three Polish bituminous coking coals. International. Journal of Coal Geology, (78), 169–176. http://dx.doi.org/10.1016/j.coal.2008.11.002 [CrossRef] [Google Scholar]
- Adschiri, T., Shiraha, T., Kojima, T., & Furusawa, T. (1986). Prediction of CO2 gasification rate of char in fluidized bed gasifier. Fuel, (65), 688–693. [Google Scholar]
- Dychkovskyi, R.O. (2015). Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37–42. [Google Scholar]
- Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30–36. [Google Scholar]
- Samaras, P. Diamadopoulos, E., & Sakellaropoulod, G.P. (1996). The effect of mineral matter and pyrolysis conditions on the gasification of Greek lignite by carbon dioxide. Fuel, (75), 1108–1114. https://doi.org/10.1016/0016-2361(96)00058-0 [CrossRef] [Google Scholar]
- Długosz, Α., Czosnek, C., Lepiarz, A., & Woś, J. (1994). Wpływ dodatku związków nieorganicznych na reakcyjność karbonizatów wyprodukowanych w warunkach laboratoryjnych. Karbo, (38), 228. [Google Scholar]
- Sakawa, M., Sakurai, Y., & Hara, Y. (1982). Influence of coal characteristics on CO2 gasification. Fuel, 61(8), 717–720. https://doi.org/10.1016/0016-2361(82)90245-9 [CrossRef] [Google Scholar]
- Bondarenko, V., Kovalevska, I., & Dychkovskiy, R. (2010). Features of selectivity process of borehole underground coal gasification. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 219–222. https://doi.org/10.1201/b11329-36 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.