Open Access
Issue
E3S Web Conf.
Volume 569, 2024
GeoAmericas 2024 - 5th Pan-American Conference on Geosynthetics
Article Number 02001
Number of page(s) 11
Section Roads & Railways 1
DOI https://doi.org/10.1051/e3sconf/202456902001
Published online 19 September 2024
  1. A. Obaid, M. D. Nazzal, L. Abu Qtaish, S. S. Kim, A. Abbas, M. Arefin, T. Quasem, Effect of RAP source on cracking resistance of asphalt mixtures with high RAP contents, Journal of Materials in Civil Engineering, Volume 31, Issue 10, 04019213, (2019). [Google Scholar]
  2. K. R. Hansen, A. Copeland, Asphalt pavement industry survey on recycled materials and warm-mix asphalt usage: 2016, Rep. No. IS-138. Lanham, MD: National Asphalt Pavement Association, (2017). [Google Scholar]
  3. D. H. Timm, R. C. West, A. J. Taylor, Performance and fatigue analysis of high reclaimed asphalt pavement content and warm-mix asphalt test sections, Transportation Research Record, No. 2575, 196–205, (2016). [Google Scholar]
  4. Y. Chen, Z. Chen, Q. Xiang, W. Qin, J. Yi, Research on the influence of RAP and aged asphalt on the performance of plant-mixed hot recycled asphalt mixture and blended asphalt, Case Studies in Construction Materials, Volume 15, e00722, (2021). [CrossRef] [Google Scholar]
  5. X. Ma, J. Wang, Y. Xu, Investigation on the effects of RAP proportions on the pavement performance of recycled asphalt mixtures, Frontiers in Materials, Volume 8, 842809, (2022). [CrossRef] [Google Scholar]
  6. C. Purdy, H. Rizvi, Y. Mehta, A. Nolan, A. Ali, Methodology to determine optimum rejuvenator dosage for 50 percent high-rap mixture, Transportation Research Board, No. 17-04683, (2017). [Google Scholar]
  7. H. Ziari, M. R. M. Aliha, A. Moniri, Y. Saghafi, Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber, Construction and Building Materials, Volume 230, 117015, (2020). [CrossRef] [Google Scholar]
  8. N. S. Correia, J. G. Zornberg, Mechanical response of flexible pavements enhanced with geogrid-reinforced asphalt overlays, Geosynthetics International, Volume 23, Issue 3, 183–193, (2016). [CrossRef] [Google Scholar]
  9. K. Kazimierowicz-Frankowska, Influence of geosynthetic reinforcement on maximum settlements of semi-rigid pavements, Geosynthetics International, Volume 27, Issue 4, 348–363, (2020). [CrossRef] [Google Scholar]
  10. E. Pasquini, M. Bocci, F. Canestrari, Laboratory characterisation of optimised geocomposites for asphalt pavement reinforcement, Geosynthetics International, Volume 21, Issue 1, 24–36, (2014). [CrossRef] [Google Scholar]
  11. V. V. Kumar, S. Saride, Evaluation of flexural fatigue behavior of two layered asphalt beams with geosynthetic interlayers using digital image correlation, Proceedings of the Transportation Research Board (TRB) Annual Meeting, (2017). [Google Scholar]
  12. S. Saride, V. V. Kumar, Influence of geosynthetic-interlayers on the performance of asphalt overlays on pre-cracked pavements, Geotextiles and Geomembranes, Volume 45, Issue 3, 184–196, (2017). [CrossRef] [Google Scholar]
  13. N. H. Tran, G. Julian, A. J. Taylor, R. Willis, D. Hunt. Effect of Geosynthetic Material in Reclaimed Asphalt Pavement on Performance Properties of Asphalt Mixtures. Transportation Research Record, No. 2294, 26–33, (2012). [Google Scholar]
  14. A. Saxena, V. V. Kumar, N. S. Correia, J. G. Zornberg, Evaluation of Millability and Recyclability of Asphalt with Paving Interlayers. Geotechnical Testing Journal, Volume 47, Issue 1, (2024). [CrossRef] [Google Scholar]
  15. AASHTO T164-22, Standard Method of Test Quantitative Extraction of Asphalt Binder from Asphalt Mixtures, Washington, DC: American Association of State and Highway Transportation Officials, (2022). [Google Scholar]
  16. TxDOT, Standard Specifications for Construction and Maintenance of Highways, Streets, and Bridges. Austin, TX: Texas, Department of Transportation, (2014). [Google Scholar]
  17. G. H. Roodi, J. G. Zornberg, L. Yang, V. V. Kumar. Cross-Shear Test for geosynthetic-reinforced asphalt. Transportation Geotechnics, 38, 100902, (2022). [Google Scholar]
  18. A. Saxena, V. V. Kumar, N. S. Correia, J. G. Zornberg, Evaluation of Cracking Resistance Potential of Geosynthetic-Reinforced Asphalt Specimens Using Cross-Shear Test, In Airfield and Highway Pavements, pp. 196–208, (2023). [Google Scholar]
  19. S. I. Lee, A. N. M. Faruk, L. F. Walubita, Comparison of fracture cracking parameters from monotonic loading tests: indirect tension and monotonic overlay tester tests, Transportation Research Record, No. 2576, 19–27, (2016). [CrossRef] [Google Scholar]
  20. L. F. Walubita, L. Fuentes, S. I. Lee, O. Guerrero, E. Mahmoud, B. Naik, G. S. Simate, Correlations and preliminary validation of the laboratory monotonic overlay test (OT) data to reflective cracking performance of in-service field highway sections, Construction and Building Materials, Volume 267, 121029, (2021). [CrossRef] [Google Scholar]
  21. H. Fazaeli, Y. Samin, A. Pirnoun, A. S. Dabiri, Laboratory and field evaluation of the warm fiber reinforced high performance asphalt mixtures (case study Karaj-Chaloos Road), Construction and Building Materials, Volume 122, 273–283, (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.