Open Access
Issue
E3S Web Conf.
Volume 569, 2024
GeoAmericas 2024 - 5th Pan-American Conference on Geosynthetics
Article Number 01005
Number of page(s) 8
Section Geosynthetic Properties 1
DOI https://doi.org/10.1051/e3sconf/202456901005
Published online 19 September 2024
  1. Fleming, I.R.; Sharma, J.S.; Jogi, M.B. (2006). Shear strength of geomembrane-soil interface under unsaturated conditions. Geotextiles and Geomembranes, v. 24(5): 274–284. [Google Scholar]
  2. Mello, L.G.R. De. (2001). Estudo da interação solo-geossintético em taludes de obras de disposição de resíduos. Dissertação de Mestrado, Universidade de Brasília, Brasil, 137 p. [Google Scholar]
  3. A. Petrovic, I. (2016). Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste. Waste Management & Research, v. 34 (9): 840–850. [CrossRef] [PubMed] [Google Scholar]
  4. Jahanfar, A. (2017). A novel risk assessment method for landfill slope failure: Case study application for Bhalswa Dumpsite, India. Waste Management & Research, v. 35(3), p. 220–227. [CrossRef] [PubMed] [Google Scholar]
  5. Daciolo, L. V. P.; Correia, N.S.; Boscov, M. E. G. (2021). Extensive database of MSW shear strength parameters obtained from laboratorial direct shear tests: Proposal for data classification. Waste Management, v.140, 245–259. [Google Scholar]
  6. Tanga, A. T. (2022). Machine learning for geomembrane-sand interface analysis. Master of degree, University of de Brasilia, Brazil, 84 p. [Google Scholar]
  7. Gravetter & Wallnau (2015). Statistics for the behavioral sciences. Cengage Learning, Boston, USA, p. 755. [Google Scholar]
  8. Pant, A.; Ramana, G. V. (2021). Novel application of machine learning for estimation of pullout coefficient of geogrid. Geosynthetics International, v. 29 (4): 342–355. [Google Scholar]
  9. Igzin, M. (1997). Geomembrane-sand interface friction. Master's thesis, Middle East Technical University of Turkey, 171 p. [Google Scholar]
  10. Blond, E.; Elie, G. (2006). Interface shear-strength properties of textured polyethylene geomembranes. 59th Canadian Geotechnical Conference, Quebec, Canada, (59): 898–904. [Google Scholar]
  11. Afonso, M.R.F.L. (2009). Ensaios de corte directo na caracterização da interface solo-geossintético: efeito da variação da tensão normal. Dissertação de Mestrado, Universidade de Porto, Portugal, 82 p. [Google Scholar]
  12. Vangla, P.; Latha, G. M. (2017). Surface topographical analysis of geomembranes and sands using a 3D optical profilometer. Geosynthetics International, v. 2(24): 151–166. [CrossRef] [Google Scholar]
  13. Sánchez, N. P. (2018). Estudo de alguns aspectos que influenciam a aderência entre geossintéticos e diferentes materiais. Tese de Doutorado, Universidade de Brasília, 190 p. [Google Scholar]
  14. Vangla, P., & Gali, M.L. (2016a). Shear behavior of sand-smooth geomembrane interfaces through micro-topographical analysis. Geotextiles and Geomembranes, v. 44(4): 592–603. [CrossRef] [Google Scholar]
  15. Vangla, P., & Gali, M.L. (2016b). Effect of particle size of sand and surface asperities of reinforcement on their interface shear behavior. Geotextiles and Geomembranes, v. 44(3): 254–268. [CrossRef] [Google Scholar]
  16. Holtz, R.D.; Kovacs, W.D. (1981). An Introduction to Geotechnical Engineering. Prentice-Hall, Inc., Englewood cliffs. [Google Scholar]
  17. Koutsourais, M. M.; Pucetas, R. C.; Sprague, C.J. (1991). Interface Friction Study of Cap and Liner Components for Landfill Design. Geotextiles and Geomembranes 10 (1991): 531–548. [CrossRef] [Google Scholar]
  18. Saeed, A. B. E. (2017). Effect of time on soil-geomembrane interface shear strength. Master's thesis, University of Dayton, Ohio, 111 p. [Google Scholar]
  19. Cen, W. J.; Wang, H.; Sun, Y.J.; Wen, L.S. (2018). Monotonic and cyclic shear behavior of geomembrane-sand interface. Geosynthetics International, v. 25(4): 369–377. [CrossRef] [Google Scholar]
  20. Adeleke, D.; Nolutshungu, L.; Kalumba, D.; Orikot, J. (2020). An Investigation into the Effects of Asperities on Geomembrane/Geotextile Interface Shear Characteristics. Master's thesis, University of Cape Town, South Africa, 144 p. [Google Scholar]
  21. ASTM-American society for testing and materials. (2021). D5321-Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear. West Conshohocken, 2021. [Google Scholar]
  22. Rebelo, K. M. W. (2003). Resistência de interface entre geomembranas e solos através do ensaio de ring shear. Tese de Doutorado, Escola de Engenharia de São Carlos, 216p. [Google Scholar]
  23. Samanta, M.; Punetha, P.; Sharma, M. (2017). Effect of roughness on interface shear behavior of sand with steel and concrete surface. Geomechanics and Engineering, v. 14(4): 387–398. [Google Scholar]
  24. O’Rourke, T. D.; Druschel, S.; Netravali, A. N. (1989). Shear Strength characteristics of sand-polymer interfaces. Journal of Geotechnical Engineering, v. 116 (3): 451–469. [Google Scholar]
  25. Marques, L. B. (2021). Avaliação dos parâmetros de resistência na interface solo-geomembrana através do equipamento cisalhamento direto. Trabalho de Conclusão de Curso, Universidade Federal de Santa Maria, 75 p. [Google Scholar]
  26. Butterfield, R.; Andrawes, K.Z. (1972). On the angles of friction between sand and plane surfaces. Journal of Terramechanics, v. 8(4): 15–23. [CrossRef] [Google Scholar]
  27. Pavanello, P.; Carrubba, P.; Moraci, N. (2022). Geosynthetic Interface Friction at Low Normal Stress: Two Approaches with Increasing Shear Loading. Applied Sciences, v. 12 (3): 1065. [CrossRef] [Google Scholar]
  28. Araújo, G. L. S.; Sánchez, N. P.; Palmeira, E. M.; Almeida, M. G. G. (2022). Influence of micro and macroroughness of geomembrane surfaces on soil-geomembrane and geotextile-geomembrane interface strength. Geotextiles and Geomembranes, v. 50 (2022): 751–763. [CrossRef] [Google Scholar]
  29. Sousa Pinto, C. (2006). Curso básico de mecânica dos solos. Oficina de Textos, São Paulo, SP, p. 368. [Google Scholar]
  30. ABNT-Associação Brasileira de Normas Técnicas. (2013). NBR ISO 12957.2: Geossintéticos-Determinação das características de atrito. Parte 2: Ensaio de Plano Inclinado. Rio de Janeiro: ABNT, 2013. 16 p. [Google Scholar]
  31. Gourc, J.P.; Lalarakotoson, S.; Müller-Rochholz, H. & Bronstein, Z. (1996). Friction measurement by direct shearing or tilting process-development of a european standard. First European Geosynthetics Conference (EUROGEO 1), Balkema, Rotterdam. [Google Scholar]
  32. Pitanga, H.N., Gourc, J. P.; Vilar, O.M. (2009). Interface shear strength of geosynthetics: evaluation and analysis of inclined plane tests. Geotextiles and Geomembranes, v. 27(6): 435–446. [CrossRef] [Google Scholar]
  33. Aguiar, R. A. (2003). Ensaios de rampa para estudo da resistência de interface solo-geossintético. Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, Brasil, 121 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.