Open Access
Issue
E3S Web Conf.
Volume 569, 2024
GeoAmericas 2024 - 5th Pan-American Conference on Geosynthetics
Article Number 29001
Number of page(s) 13
Section Roads & Railways 4
DOI https://doi.org/10.1051/e3sconf/202456929001
Published online 19 September 2024
  1. J. Wall III and M. R. Smith, US DOT FHWA, Life Cycle Cost Analysis in Pavement Design-Interim Bulletin, FHWA-SA-98-079, xi (1998) [Google Scholar]
  2. US Deparment of transportation, Life-Cycle Cost Analysis Primer, FHWA IF-02-047, 7, (2022) [Google Scholar]
  3. L.M. Pierce, G. McGovern, K.A. Zimmerman, US-DOT FHWA, Practical Guide for Quality Management of Pavement Condition Data Collection, 11 (2013) [Google Scholar]
  4. J. Odoki and H. G. Kerali, PIARC, World Road Associ., Analytical Framework and Model Descriptions Version 2.0, Vol. 4, 2.2.2 A1-7 (2006) [Google Scholar]
  5. AASHTO, Geosynthetic Reinforcement of the Aggregate Base Course of Flexible Pavement Structures, R 50-09, 5 (2013) [Google Scholar]
  6. J. P. Jiroud and J. Han, Geosynth. Mgzn., Mechanism governing the performance of unpaev roads incoporating geosynthetics, Part 1, 29 (2016) [Google Scholar]
  7. X. Peng. and J. Zornberg, Procedia Engineering, Evaluation of load Transfer in Geogrids for Base Stabilization Using Transparent Soil, 189 (2017) 307-314, 308 (2017) [Google Scholar]
  8. G. H. Roodi, J. G. Zornberg, M. M. Aboelwafa, J. R. Philliphs, L. Zheng and J. Martinez, Texas DOT, Soil-Geosynthetic Interaction Test to Develop Specifications, FHWA/TX- 18/5-4829-03-1, 1–2 (2017) [Google Scholar]
  9. S. R. Jersey, J. S. Tingle, G. J. Norwood, J. Kwon and M. Wayne, TRB, Full-Scale Evaluation of Geogrid Reinforced Thin Flexible Pavements, 2–3 (2012) [Google Scholar]
  10. Secretary of Infraestructure and Transport, HND Government, Memoria Institucional, 83 (2016) [Google Scholar]
  11. ICA Inversiones, Propuesta de Refuerzo de Estructura de Pavimento Mediante Geomalla Triaxial TX, (2015) [Google Scholar]
  12. Ingios Geotechnics, Automated Plate Load Test Tech Brief, 1–2 (2014) [Google Scholar]
  13. P. K. R. Vennapusa, D. J. White, M. H. Wayne, J. Kwon, A. Galindo and L. García, Intern. Journ. Of Pavmnt, In situ performance verification of geogrid-stabilized aggregate layer: Route-39 El Carbón-Bonito Oriental, Honduras case study, 3,4,9,10 (2018) [Google Scholar]
  14. E. Aleman, L. García and O. Ardila, UE INVEST-H, Desafío en la subrasante, BID 2155/BL-HO, 1 (2019) [Google Scholar]
  15. SOPTRAVI, Lic. 10DGC-Const., Pliegos de referencia, 28 (2008) [Google Scholar]
  16. MDOT, Asset Management Background, International Roughness Index, 1 (2017) [Google Scholar]
  17. C. A. Cameron, The Univ. Of Brunswick, Innovative Means of Collecting International Roughness Index Using Smartphone Technology, (2012) [Google Scholar]
  18. P. Tamrakar, M. Wayne, M. Stafford, A. Galindo, C. Cameron and L. Garcia, Geoamericas 2020, Pavement Performance Evaluation of Geogrid Stabilized Roadways, 4th Pan American Conference on Geosynthetics, 5 (2020) [Google Scholar]
  19. C. R. Bennett and W. D. O. Paterson, PIARC World Road Associ., A Guide to Calibration and Adaptation, Vol. 5, 2, 4 (2000) [Google Scholar]
  20. T. Gutierrez, M. Arce, LANAMME, Índice de Regularidad Internacional, LM-PI-PV- IN-24a-04, 8 (2024) [Google Scholar]
  21. D. M. Barbieri, B. Luo, F. Wang, I. Hoff, S. Wu, J. Li, H. R. Vignisdottir, R. A. Bohne, S. Anastasio and T. Kristensen, Transport. Res. Interdisciplinary Perspect., Assessment of carbon dioxide emissions during production, construction and use stage of asphalt pavements, 1–11 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.