Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00047
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202560100047
Published online 16 January 2025
  1. A. S. A. Fletcher and D. Nirmal, A survey of Gallium Nitride HEMT for RF and high power applications, Superlattices and Microstructures 109, 519 (2017). [CrossRef] [Google Scholar]
  2. B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, Transient electron transport in wurtzite GaN, InN, and AlN, Journal of Applied Physics 85, 7727 (1999). [CrossRef] [Google Scholar]
  3. A. Jarndal and G. Kompa, A new small-signal modeling approach applied to GaN devices, IEEE Trans. Microwave Theory Techn. 53, 3440 (2005). [CrossRef] [Google Scholar]
  4. Y. Zhang, S. Huang, K. Wei, S. Zhang, X. Wang, Y. Zheng, G. Liu, X. Chen, Y. Li, and X. Liu, Millimeter-Wave AlGaN/GaN HEMTs with 43.6% Power-Added- Efficiency at 40 GHz Fabricated by Atomic Layer Etching Gate Recess, IEEE Electron Device Letters PP, 1 (2020). [CrossRef] [Google Scholar]
  5. S. A. Albahrani, L. Heuken, D. Schwantuschke, T. Gneiting, J. N. Burghartz, and S. Khandelwal, Consistent Surface-Potential-Based Modeling of Drain and Gate Currents in AlGaN/GaN HEMTs, IEEE Trans. Electron Devices 67, 455 (2020). [CrossRef] [Google Scholar]
  6. Y. K. Yadav, B. B. Upadhyay, M. Meer, N. Bhardwaj, S. Ganguly, and D. Saha, Ti/Au/Al/Ni/Au low contact resistance and sharp edge acuity for highly scalable AlGaN/GaN HEMTs, IEEE Electron Device Lett. 1 (2018). [CrossRef] [Google Scholar]
  7. X. Chao, C. Tang, J. Tan, L. Chen, H. Zhu, Q. Sun, and D. W. Zhang, Analysis of VTH Degradation and Recovery Behaviors of p-GaN Gate HEMTs Under Forward Gate Bias, IEEE Transactions on Electron Devices 70, 2970 (2023). [CrossRef] [Google Scholar]
  8. S. Chatterjee, A. Sengupta, S. Kundu, and A. Islam, Analysis of AlGaN/GaNHigh Electron Mobility Transistor for High Frequency Application, in 2017 Devices for Integrated Circuit (Devl<C) (IEEE, Kalyani, India, 2017), pp. 196–199. [Google Scholar]
  9. O. Ambacher et al., Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures, Journal of Applied Physics 87, 334 (2000). [CrossRef] [Google Scholar]
  10. R. Kumar, Analysis of Small-Signal Parameters of 2-D MODFET with Polarization Effects for Microwave Applications, (n.d.). [Google Scholar]
  11. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous Polarization and Piezoelectric Constants of III-V Nitrides, Physical Review. B, Condensed Matter 56, (1997). [Google Scholar]
  12. S. Baskaran, A. Mohanbabu, N. Anbuselvan, N. Mohankumar, D. Godwinraj, and C. K. Sarkar, Modeling of 2DEG sheet carrier density and DC characteristics in spacer based AlGaN/AlN/GaN HEMT devices, Superlattices and Microstructures 64, 470 (2013). [CrossRef] [Google Scholar]
  13. C. El Yazami and S. Bri, An Analytic Model for the 2-DEG Density Current-Voltage Characteristic for AlGaN/GaN HEMTs, JERA 70, 69 (2024). [CrossRef] [Google Scholar]
  14. E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors, Applied Physics Letters 71, 2794 (1997). [CrossRef] [Google Scholar]
  15. Jie Liu, Yugang Zhou, Jia Zhu, K. M. Lau, and K. J. Chen, AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement, IEEE Electron Device Lett. 27, 10 (2006). [CrossRef] [Google Scholar]
  16. J. Kuzmk, InAlN/(In)GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal, Semicond. Sci. Technol. 17, 540 (2002). [CrossRef] [Google Scholar]
  17. M. Molnar, D. Donoval, J. Kuzmik, J. Marek, A. Chvala, P. Pribytny, M. Mikolasek, K. Rendek, and V. Palankovski, Simulation study of interface traps and bulk traps in n++GaN/InAlN/AlN/GaN high electron mobility transistors, Applied Surface Science 312, 157 (2014). [CrossRef] [Google Scholar]
  18. Silvaco Int. Atlas User SManual Device Simulation Software: Santa Clara, CA 95054, 2016. [Online]. Available at: www.Silvaco.Com, www.silvaco.com. [Google Scholar]
  19. Y. Liang, R. Chen, J. Han, X. Wang, Q. Chen, and H. Yang, The Study of the Single Event Effect in AlGaN/GaN HEMT Based on a Cascode Structure, Electronics 10, 440 (2021). [CrossRef] [Google Scholar]
  20. T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, AlGaN/GaN high electron mobility transistors with InGaN back-barriers, IEEE Electron Device Letters 27, 13 (2006). [CrossRef] [Google Scholar]
  21. M. Vadizadeh, M. Fallahnejad, and A. Kashaniniya, Design and Simulation Noise Characteristics of AlGaN/GaN HEMT on SIC Substrate for Low Noise Applications, Journal of Electric al and Electronics Engineering (IOSR - JEEE) (2015). [Google Scholar]
  22. F. Imane and M. Kameche, Optimization of DC and AC performances for A10. 26Ga0. 74N/GaN/4H-SiC HEMT with 30nm T-gate, 13, 361 (2021). [Google Scholar]
  23. K. Shinohara et al., Self-Aligned-Gate GaN-HEMTs with Heavily-DopedN+-GaN Ohmic Contacts to 2DEG, in (2012), p. 27.2.1–27.2.4. [Google Scholar]
  24. Y. Wu, M. Jacob-Mitos, M. L. Moore, and S. Heikman, A 97.8% Efficient GaN HEMT Boost Converter With 300-W Output Power at 1 MHz, IEEE Electron Device Letters 29, 824 (2008). [CrossRef] [Google Scholar]
  25. T. Yamamoto, E. Mitani, K. Inoue, M. Nishi, and S. Sano, A 9.5-10.5GHz 60W AlGaN/GaN HEMT for X-Band High Power Application, in (2007), pp. 173–175. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.