Open Access
Issue |
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
|
|
---|---|---|
Article Number | 00048 | |
Number of page(s) | 31 | |
DOI | https://doi.org/10.1051/e3sconf/202560100048 | |
Published online | 16 January 2025 |
- A. Chennupati, Addressing the climate crisis: The synergy of AI and electric vehicles in combatting global warming, World J. Adv. Eng. Technol. Sci. 12 (2024) 041–046. https://doi.org/10.30574/wjaets.2024.12.1.0179. [CrossRef] [Google Scholar]
- G.R. Astbury, A review of the properties and hazards of some alternative fuels, Process Saf. Environ. Prot. 86 (2008) 397–414. https://doi.org/10.1016/j.psep.2008.05.001. [CrossRef] [Google Scholar]
- O.A. Marzouk, Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C, Energies 17 (2024) 646. https://doi.org/10.3390/en17030646. [CrossRef] [Google Scholar]
- X.P. Nguyen, A.T. Hoang, A.I. Olcer, T.T. Huynh, Record decline in global C01 emissions prompted by COVID-19 pandemic and its implications on future climate change policies, Energy Sources Part Recovery Util. Environ. Eff. 0 (n.d.) 1–4. https://doi.org/10.1080/15567036.2021.1879969. [Google Scholar]
- S. Francini, G. Chirici, L. Chiesi, P. Costa, G. Caldarelli, S. Mancuso, Global spatial assessment of potential for new peri-urban forests to combat climate change, Nat. Cities 1 (2024) 286–294. https://doi.org/10.1038/s44284-024-00049-1. [CrossRef] [Google Scholar]
- O.A. Marzouk, Detailed and simplified plasma models in combined-cycle magnetohydrodynamic power systems, Int. J. Adv. Appl. Sci. 10 (2023) 96–108. https://doi.org/10.21833/ijaas.2023.11.013. [CrossRef] [Google Scholar]
- Z. Dong, C. Xia, K. Fang, W. Zhang, Effect of the carbon emissions trading policy on the co-benefits of carbon emissions reduction and air pollution control, Energy Policy 165 (2022) 112998. https://doi.org/10.1016/j.enpol.2022.112998. [CrossRef] [Google Scholar]
- A. Bajoria, J. Kanpariya, A. Bera, Greenhouse gases and global warming, in: Adv. Technol. Dev. Greenh. Gases Emiss. Capture Convers., Elsevier, 2024: pp. 121–135. https://doi.org/10.1016/B978-0-443-19066-7.00006-0. [CrossRef] [Google Scholar]
- O.A. Marzouk, Performance analysis of shell-and-tube dehydrogenation module: Dehydrogenation module, Int. J. Energy Res. 41 (2017) 604–610. https://doi.org/10.1002/er.3637. [CrossRef] [Google Scholar]
- K.R. Abbasi, Q. Zhang, B.S. Alotaibi, M.A. Abuhussain, R. Alvarado, Toward sustainable development goals 7 and 13: A comprehensive policy framework to combat climate change, Environ. Impact Assess. Rev. 105 (2024) 107415. https://doi.org/10.1016/j.eiar.2024.107415. [CrossRef] [Google Scholar]
- D. Xuan, X. Ma, Y. Shang, Can China’s policy of carbon emission trading promote carbon emission reduction?, J. Clean. Prod. 270 (2020) 122383. https://doi.org/10.1016/j.jclepro.2020.122383. [CrossRef] [Google Scholar]
- Y.-S. Huang, C.-C. Fang, Y.-A. Lin, Inventory management in supply chains with consideration of Logistics, green investment and different carbon emissions policies, Comput. Ind. Eng. 139 (2020) 106207. https://doi.org/10.1016/j.cie.2019.106207. [CrossRef] [Google Scholar]
- O.A. Marzouk, Adiabatic Flame Temperatures for Oxy-Methane, Oxy-Hydrogen, Air-Methane, and Air-Hydrogen Stoichiometric Combustion using the NASA CEARUN Tool, GRI-Mech 3.0 Reaction Mechanism, and Cantera Python Package, Eng. Technol. Appl. Sci. Res. 13 (2023) 11437–11444. https://doi.org/10.48084/etasr.6132. [CrossRef] [Google Scholar]
- H. Mishra, K.S. Kumar, K. Pratibha, C. Periyasamy, P.V.S. Rao, Seaweeds Aid in Carbon Sequestration to Combat Global Warming: A Glimpse, in: G.A. Ravishankar, A.R. Rao, S. Kim (Eds.), Algae Mediat. Bioremediation, 1st ed., Wiley, 2024: pp. 505–520. https://doi.org/10.1002/9783527843367.ch25. [CrossRef] [Google Scholar]
- X. Chen, B. Lin, Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China, Energy Policy 157 (2021) 112510. https://doi.org/10.1016/j.enpol.2021.112510. [CrossRef] [Google Scholar]
- O.A. Marzouk, Zero Carbon Ready Metrics for a Single-Family Home in the Sultanate of Oman Based on EDGE Certification System for Green Buildings, Sustainability 15 (2023) 13856. https://doi.org/10.3390/su151813856. [CrossRef] [Google Scholar]
- R.C. Rial, Biofuels versus climate change: Exploring potentials and challenges in the energy transition, Renew. Sustain. Energy Rev. 196 (2024) 114369. https://doi.org/10.1016/j.rser.2024.114369. [CrossRef] [Google Scholar]
- O.A. Marzouk, Radiant Heat Transfer in Nitrogen-Free Combustion Environments, Int. J. Nonlinear Sci. Numer. Simul. 19 (2018) 175–188. https://doi.org/10.1515/ijnsns-2017-0106. [CrossRef] [Google Scholar]
- A. Elshkaki, The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios, Energy 267 (2023) 126596. https://doi.org/10.1016/j.energy.2022.126596. [CrossRef] [Google Scholar]
- N. Saqib, G. Dinca, Exploring the asymmetric impact of economic complexity, FDI, and green technology on carbon emissions: Policy stringency for clean-energy investing countries, Geosci. Front. 15 (2024) 101671. https://doi.org/10.1016/j.gsf.2023.101671. [CrossRef] [Google Scholar]
- O.A. Marzouk, Condenser Pressure Influence on Ideal Steam Rankine Power Vapor Cycle using the Python Extension Package Cantera for Thermodynamics, Eng. Technol. Appl. Sci. Res. 14 (2024) 14069–14078. https://doi.org/10.48084/etasr.7277. [CrossRef] [Google Scholar]
- D. Tong, J. Cheng, Y. Liu, S. Yu, L. Yan, C. Hong, Y. Qin, H. Zhao, Y. Zheng, G. Geng, M. Li, F. Liu, Y. Zhang, B. Zheng, L. Clarke, Q. Zhang, Dynamic projection of anthropogenic emissions in China: methodology and 2015-2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios, Atmospheric Chem. Phys. 20 (2020) 5729–5757. https://doi.org/10.5194/acp-20-5729-2020. [CrossRef] [Google Scholar]
- F. Creutzig, J.C. Goldschmidt, P. Lehmann, E. Schmid, F. Von Blücher, C. Breyer, B. Fernandez, M. Jakob, B. Knopf, S. Lohrey, T. Susca, K. Wiegandt, Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition, Renew. Sustain. Energy Rev. 38 (2014) 1015–1028. https://doi.org/10.1016/j.rser.2014.07.028. [CrossRef] [Google Scholar]
- O.A. Marzouk, Urban air mobility and flying cars: Overview, examples, prospects, drawbacks, and solutions, Open Eng. 12 (2022) 662–679. https://doi.org/10.1515/eng-2022-0379. [CrossRef] [Google Scholar]
- A. Woodrum, P.M. DeMarco, Growing Cleaner More Efficient Manufacturing, in: P.M. DeMarco (Ed.), ReImagine Appalachia Heal. Land Empower. People, Springer Nature Switzerland, Cham, 2024: pp. 283–314. https://doi.org/10.1007/978-3-031-61921-2_11. [CrossRef] [Google Scholar]
- T. Hoppe, E. Van Bueren, Guest editorial: governing the challenges of climate change and energy transition in cities, Energy Sustain. Soc. 5 (2015) 19, s13705-015-0047-7. https://doi.org/10.1186/s13705-015-0047-7. [CrossRef] [Google Scholar]
- O.A. Marzouk, Compilation of Smart Cities Attributes and Quantitative Identification of Mismatch in Rankings, J. Eng. 2022 (2022) 1–13. https://doi.org/10.1155/2022/5981551. [CrossRef] [Google Scholar]
- G.L. Kyriakopoulos, D. Streimikiene, T. Balezentis, Addressing Challenges of Low- Carbon Energy Transition, Energies 15 (2022) 5718. https://doi.org/10.3390/en15155718. [CrossRef] [Google Scholar]
- O.A. Marzouk, Evolution of the (Energy and Atmosphere) credit category in the LEED green buildings rating system for (Building Design and Construction: New Construction), from version 4.0 to version 4.1, J. Infrastruct. Policy Dev. 8 (2024) 5306. https://doi.org/10.24294/jipd.v8i8.5306. [CrossRef] [Google Scholar]
- J.-B. Chung, E.-S. Kim, Public perception of energy transition in Korea: Nuclear power, climate change, and party preference, Energy Policy 116 (2018) 137–144. https://doi.org/10.1016/j.enpol.2018.02.007. [CrossRef] [Google Scholar]
- O.A. Adelekan, B.S. Ilugbusi, O. Adisa, O.C. Obi, K.F. Awonuga, O.F. Asuzu, N.L. Ndubuisi, ENERGY TRANSITION POLICIES: A GLOBAL REVIEW OF SHIFTS TOWARDS RENEWABLE SOURCES, Eng. Sci. Technol. J. 5 (2024) 272–287. https://doi.org/10.51594/estj.v5i2.752. [CrossRef] [Google Scholar]
- O.A. Marzouk, Subcritical and supercritical Rankine steam cycles, under elevated temperatures up to 900°C and absolute pressures up to 400 bara, Adv. Mech. Eng. 16 (2024) 1–18. https://doi.org/10.1177/16878132231221065. [CrossRef] [Google Scholar]
- A.M. Khourchid, T.A. Al-Ansari, S.G. Al-Ghamdi, Cooling Energy and Climate Change Nexus in Arid Climate and the Role of Energy Transition, Buildings 13 (2023) 836. https://doi.org/10.3390/buildings13040836. [CrossRef] [Google Scholar]
- S. Dekeyrel, M. Fessler, Digitalisation: an enabler for the clean energy transition, J. Energy Nat. Resour. Law 42 (2024) 185–209. https://doi.org/10.1080/02646811.2023.2254103. [CrossRef] [Google Scholar]
- O.A. Marzouk, Chronologically-Ordered Quantitative Global Targets for the Energy- Emissions-Climate Nexus, from 2021 to 2050, in: 2022 Int. Conf. Environ. Sci. Green Energy ICESGE, 2022: pp. 1–6. https://doi.org/10.1109/ICESGE56040.2022.10180322. [Google Scholar]
- P. Geng, E. Cao, Q. Tan, L. Wei, Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review, Renew. Sustain. Energy Rev. 71 (2017) 523–534. https://doi.org/10.1016/j.rser.2016.12.080. [CrossRef] [Google Scholar]
- A. Constantin, Nuclear hydrogen projects to support clean energy transition: Updates on international initiatives and IAEA activities, Int. J. Hydrog. Energy 54 (2024) 768–779. https://doi.org/10.1016/j.ijhydene.2023.09.250. [CrossRef] [Google Scholar]
- O.A. Marzouk, Toward More Sustainable Transportation: Green Vehicle Metrics for 2023 and 2024 Model Years, in: A.K. Nagar, D.S. Jat, D.K. Mishra, A. Joshi (Eds.), Intell. Sustain. Syst., Springer Nature Singapore, Singapore, 2024: pp. 261–272. https://doi.org/10.1007/978-981-99-7886-1_23. [Google Scholar]
- Erdiwansyah, R. Mamat, M.S.M. Sani, K. Sudhakar, A. Kadarohman, R.E. Sardjono, An overview of Higher alcohol and biodiesel as alternative fuels in engines, Energy Rep. 5 (2019) 467–479. https://doi.org/10.1016/j.egyr.2019.04.009. [CrossRef] [Google Scholar]
- T. Jerzyniak, A. Herranz-Surralles, EU Geoeconomic Power in the Clean Energy Transition, JCMS J. Common Mark. Stud. 62 (2024) 1028–1045. https://doi.org/10.1111/jcms.13590. [CrossRef] [Google Scholar]
- O.A. Marzouk, Recommended LEED-Compliant Cars, SUVs, Vans, Pickup Trucks, Station Wagons, and Two Seaters for Smart Cities Based on the Environmental Damage Index (EDX) and Green Score, in: M. Ben Ahmed, A.A. Boudhir, R. El Meouche, I.R. Karas (Eds.), Innov. Smart Cities Appl. Vol. 7, Springer Nature Switzerland, Cham, 2024: pp. 123–135. https://doi.org/10.1007/978-3-031-53824-7_12. [Google Scholar]
- N.F. Sayre, The Politics of the Anthropogenic*, Annu. Rev. Anthropol. 41 (2012) 57–70. https://doi.org/10.1146/annurev-anthro-092611-145846. [CrossRef] [Google Scholar]
- M. Haugen, P.L. Blaisdell-Pijuan, A. Botterud, T. Levin, Z. Zhou, M. Belsnes, M. Korpas, A. Somani, Power market models for the clean energy transition: State of the art and future research needs, Appl. Energy 357 (2024) 122495. https://doi.org/10.1016/j.apenergy.2023.122495. [CrossRef] [Google Scholar]
- O.A. Marzouk, Growth in the Worldwide Stock of E-Mobility Vehicles (by Technology and by Transport Mode) and the Worldwide Stock of Hydrogen Refueling Stations and Electric Charging Points between 2020 and 2022, Key Eng. Mater. 972 (2023) 89–96. https://doi.org/10.4028/p-8IMGm4. [CrossRef] [Google Scholar]
- Z. Islam Rony, M. Mofijur, M.M. Hasan, M.G. Rasul, M.I. Jahirul, S. Forruque Ahmed, M.A. Kalam, I. Anjum Badruddin, T.M. Yunus Khan, P.-L. Show, Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals, Fuel 338 (2023) 127220. https://doi.org/10.1016/j.fuel.2022.127220. [CrossRef] [Google Scholar]
- L. Kumar, S.A. Naqvi, M.J. Deitch, M.J. Khalid, K. Naeem, A. Qayyum Amjad, A. Kumar, T.G. Gebremicael, M. Arshad, Opportunities and constraints for cleaner production policy in the developing world: a case study of Sindh Region, Pakistan, Environ. Dev. Sustain. 26 (2024) 4391–4434. https://doi.org/10.1007/s10668-022-02889-0. [Google Scholar]
- O.A. Marzouk, E.D. Huckaby, Assessment of syngas kinetic models for the prediction of a turbulent nonpremixed flame, in: Fall Meet. East. States Sect. Combust. Inst. 2009, College Park, Maryland, USA, 2009: pp. 726–751. [Google Scholar]
- A. Gibson, Z. Makuch, R. Yeganyan, N. Tan, C. Cannone, M. Howells, Long-Term Energy System Modelling for a Clean Energy Transition in Egypt’s Energy Sector, Energies 17 (2024) 2397. https://doi.org/10.3390/en17102397. [CrossRef] [Google Scholar]
- S. Bakhsh, W. Zhang, K. Ali, J. Olah, Strategy towards sustainable energy transition: The effect of environmental governance, economic complexity and geopolitics, Energy Strategy Rev. 52 (2024) 101330. https://doi.org/10.1016/j.esr.2024.101330. [CrossRef] [Google Scholar]
- [International Energy Agency] IEA, Understanding GEC Model scenarios - Global Energy and Climate Model, (2024). https://www.iea.org/reports/global-energy-and-climate-model/understanding-gec-model-scenarios (accessed July 25, 2024). [Google Scholar]
- [International Energy Agency] IEA, Net Zero Emissions by 2050 Scenario (NZE) - Global Energy and Climate Model, (2024). https://www.iea.org/reports/global-energy-and-climate-model/net-zero-emissions-by-2050-scenario-nze (accessed July 25, 2024). [Google Scholar]
- [International Energy Agency] IEA, World Energy Outlook 2023. Annual Report (26th Edition), Paris, 2023. https://iea.blob.core.windows.net/assets/42b23c45-78bc-4482-b0f9-eb826ae2da3d/WorldEnergyOutlook2023.pdf (accessed December 27, 2023). [Google Scholar]
- A. Abbas, M.S. Saravani, M. Al-Haddad, R.S. Amano, Net-Zero-Energy (NZE) Wastewater Treatment Plants (WWTPs), in: 2018 AIAA Aerosp. Sci. Meet., American Institute of Aeronautics and Astronautics, Kissimmee, Florida, 2018. https://doi.org/10.2514/6.2018-1712. [Google Scholar]
- Y. Liang, R. Kleijn, E. Van Der Voet, Increase in demand for critical materials under IEA Net-Zero emission by 2050 scenario, Appl. Energy 346 (2023) 121400. https://doi.org/10.1016/j.apenergy.2023.121400. [CrossRef] [Google Scholar]
- H. Moghaddasi, C. Culp, J. Vanegas, Net Zero Energy Communities: Integrated Power System, Building and Transport Sectors, Energies 14 (2021) 7065. https://doi.org/10.3390/en14217065. [CrossRef] [Google Scholar]
- S. Rekker, G. Chen, R. Heede, M.C. Ives, B. Wade, C. Greig, Evaluating fossil fuel companies’ alignment with 1.5 °C climate pathways, Nat. Clim. Change 13 (2023) 927–934. https://doi.org/10.1038/s41558-023-01734-0. [CrossRef] [Google Scholar]
- D.S. Renne, Progress, opportunities and challenges of achieving net-zero emissions and 100% renewables, Sol. Compass 1 (2022) 100007. https://doi.org/10.1016/j.solcom.2022.100007. [CrossRef] [Google Scholar]
- K. Akimoto, Assessment of road transportation measures for global net-zero emissions considering comprehensive energy systems, IATSS Res. 47 (2023) 196–203. https://doi.org/10.1016/j.iatssr.2023.02.005. [CrossRef] [Google Scholar]
- D. Lerede, L. Savoldi, Might future electricity generation suffice to meet the global demand?, Energy Strategy Rev. 47 (2023) 101080. https://doi.org/10.1016/j.esr.2023.101080. [CrossRef] [Google Scholar]
- J.K. Nøland, J. Auxepaules, A. Rousset, B. Perney, G. Falletti, Spatial energy density of large-scale electricity generation from power sources worldwide, Sci. Rep. 12 (2022) 21280. https://doi.org/10.1038/s41598-022-25341-9. [CrossRef] [Google Scholar]
- L. Lindholt, T. Wei, The Effects on Energy Markets of Achieving a 1.5 °C Scenario, Int. J. Environ. Res. Public. Health 20 (2023) 4341. https://doi.org/10.3390/ijerph20054341. [CrossRef] [Google Scholar]
- Y. Liang, R. Kleijn, E. van der Voet, Unlocking the resources of end-of-life ICEVs: Contributing platinum for green hydrogen production under the IEA-NZE scenario, Resour. Conserv. Recycl. 204 (2024) 107481. https://doi.org/10.1016/j.resconrec.2024.107481. [CrossRef] [Google Scholar]
- J. Nijnens, P. Behrens, O. Kraan, B. Sprecher, R. Kleijn, Energy transition will require substantially less mining than the current fossil system, Joule 7 (2023) 2408–2413. https://doi.org/10.1016/j.joule.2023.10.005. [CrossRef] [Google Scholar]
- R.J. Brecha, G. Ganti, R.D. Lamboll, Z. Nicholls, B. Hare, J. Lewis, M. Meinshausen, M. Schaeffer, C.J. Smith, M.J. Gidden, Institutional decarbonization scenarios evaluated against the Paris Agreement 1.5 °C goal, Nat. Commun. 13 (2022) 4304. https://doi.org/10.1038/s41467-022-31734-1. [CrossRef] [Google Scholar]
- [United Nations] UN, Sustainable Development Goals (SDG 7), (2024). https://unric.org/en/sdg-7 (accessed July 25, 2024). [Google Scholar]
- C.H. Gebara, A. Laurent, National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits, Renew. Sustain. Energy Rev. 173 (2023) 112934. https://doi.org/10.1016/j.rser.2022.112934. [CrossRef] [Google Scholar]
- S. Kufeoglu, SDG-7 Affordable and Clean Energy, in: Emerg. Technol., Springer International Publishing, Cham, 2022: pp. 305–330. https://doi.org/10.1007/978-3-031-07127-0_9. [CrossRef] [Google Scholar]
- C.C. Ogbumgbada, R.S. Dauda, E.G. Pereira, Sustainable Development and Off-Grid Renewable Electricity: Current Status and Challenges, in: Regul. Support-Grid Renew. Electr., Routledge, 2023. [Google Scholar]
- N.C. Ole, E.G. Pereira, P.K. Oniemola, G.K. Loureiro, Regulatory Support for Off-Grid Renewable Electricity, Taylor & Francis, 2023. [Google Scholar]
- I.A. Ibrahim, Energy transition and Sustainable Development Goal 7: a legal analysis in the context of the Arab world, J. World Energy Law Bus. 16 (2023) 77–90. https://doi.org/10.1093/jwelb/jwad008. [CrossRef] [Google Scholar]
- M.H. G. Prechtl, UN Sustainable Development Goal 7: clean energy - a holistic approach towards a sustainable future through hydrogen storage, RSC Sustain. 1 (2023) 1580–1583. https://doi.org/10.1039/D3SU90036C. [CrossRef] [Google Scholar]
- R. Natarajan, M.K. Verma, S. Muthuraj, Mapping the Global Academic Support for Sustainable Development Goal 7: A Bibliometric Analysis and Topic Modelling Approach, J. Scientometr. Res. 13 (2024) 285–297. https://doi.org/10.5530/jscires.13.1.24. [CrossRef] [Google Scholar]
- M. Walesiak, G. Dehnel, Progress on SDG 7 achieved by EU countries in relation to the target year 2030: A multidimensional indicator analysis using dynamic relative taxonomy, PLOS ONE 19 (2024) e0297856. https://doi.org/10.1371/journal.pone.0297856. [CrossRef] [PubMed] [Google Scholar]
- R. Mishra, D.B. Rahut, S. Bera, N. Dendup, T. Sonobe, In pursuit of sustainable development goal 7- Evidence of clean cooking fuel usage from 46 developing countries, Electr. J. 37 (2024) 107408. https://doi.org/10.1016/j.tej.2024.107408. [CrossRef] [Google Scholar]
- [United Nations] UN, Sustainable Development Goals (SDG 3), (2024). https://unric.org/en/sdg-3 (accessed July 25, 2024). [Google Scholar]
- S. Kufeoglu, SDG-3 Good Health and Well-Being, in: Emerg. Technol., Springer International Publishing, Cham, 2022: pp. 229–253. https://doi.org/10.1007/978-3-031-07127-0_5. [CrossRef] [Google Scholar]
- E. Eckermann, SDG 3: a Missed Opportunity to Transform Understandings and Monitoring of Health, Well-Being and Development?, Appl. Res. Qual. Life 13 (2018) 261–272. https://doi.org/10.1007/s11482-017-9527-6. [CrossRef] [Google Scholar]
- W.-K. Chiu, B.Y.F. Fong, Sustainable Development Goal 3 in Healthcare, in: T.C.H. Leung, W.-K. Chiu, C.S.-X. You, B.Y.F. Fong (Eds.), Environ. Soc. Gov. Sustain. Dev. Healthc., Springer Nature, Singapore, 2023: pp. 33–45. https://doi.org/10.1007/978-981-99-1564-4_3. [Google Scholar]
- I. Konarzewska, Meeting the Sustainable Development Goal of Good Health and Well-Being by European Union Countries in 2017, Comp. Econ. Res. Cent. East. Eur. 23 (2020) 53–68. [Google Scholar]
- T. Das, P. Holland, M. Ahmed, L. Husain, Sustainable Development Goal 3: Good Health and Well-being, in: T. Das, P.D. Nayar (Eds.), South-East Asia Eye Health Syst. Pract. Chall., Springer, Singapore, 2021: pp. 61–78. https://doi.org/10.1007/978-981-16-3787-2_4. [CrossRef] [Google Scholar]
- G. Macassa, Can Sustainable Health Behaviour Contribute to Ensure Healthy Lives and Wellbeing for All at All Ages (Sdg 3)? A Viewpoint, J. Public Health Res. 10 (2021) jphr.2021.2051. https://doi.org/10.4081/jphr.2021.2051. [CrossRef] [Google Scholar]
- A. Villas Boas, M.R.G. Esperandio, S. Caldeira, F. Incerti, From Selfcare to Taking Care of Our Common Home: Spirituality as an Integral and Transformative Healthy Lifestyle, Religions 14 (2023) 1168. https://doi.org/10.3390/rel14091168. [CrossRef] [Google Scholar]
- V. Squires, Moving from local to global: The examples of the United Nations Sustainable Development Goals and the Okanagan Charter, J. Adult Contin. Educ. (2024) 14779714241248748. https://doi.org/10.1177/14779714241248748. [CrossRef] [Google Scholar]
- P. Vera-Sanso, Will the SDGs and the UN Decade of Healthy Ageing Leave Older People Behind?, Prog. Dev. Stud. 23 (2023) 391–407. https://doi.org/10.1177/14649934231193808. [CrossRef] [Google Scholar]
- B. Bartniczak, A. Plachciak. A. Raszkowski, G.J. Lewis, Good Health and WellBeing: An Assessment of Sustainable Development Goal (SDG) No.3 in the Sahel Countries, Sustainability 16 (2024) 2109. https://doi.org/10.3390/su16052109. [CrossRef] [Google Scholar]
- [International Energy Agency] IEA, Tracking Clean Energy Progress 2023 (TCEP 2023), (2023). https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed July 23, 2024). [Google Scholar]
- [International Energy Agency] IEA, Rapid progress of key clean energy technologies shows the new energy economy is emerging faster than many think (Press Release), (2023). https://www.iea.org/news/rapid-progress-of-key-clean-energy-technologies-shows-the-new-energy-economy-is-emerging-faster-than-many-think (accessed July 23, 2024). [Google Scholar]
- P.A. Westrick, Reliability Estimates for Undergraduate Grade Point Average, Educ. Assess. 22 (2017) 231–252. https://doi.org/10.1080/10627197.2017.1381554. [CrossRef] [Google Scholar]
- O.A. Marzouk, Accrediting Artificial Intelligence Programs from the Omani and the International ABET Perspectives, in: K. Arai (Ed.), Intell. Comput., Springer International Publishing, Cham, 2021: pp. 462–474. https://doi.org/10.1007/978-3-030-80129-8_33. [CrossRef] [Google Scholar]
- E.J. Vella, E.F. Turesky, J. Hebert, Predictors of academic success in web-based courses: age, GPA, and instruction mode, Qual. Assur. Educ. 24 (2016) 586–600. https://doi.org/10.1108/QAE-08-2015-0035. [CrossRef] [Google Scholar]
- O.A. Marzouk, Benchmarks for the Omani higher education students-faculty ratio (SFR) based on World Bank data, QS rankings, and THE rankings, Cogent Educ. 11 (2024) 2317117. https://doi.org/10.1080/2331186X.2024.2317117. [CrossRef] [Google Scholar]
- J.E. Aspelmeier, M.M. Love, L.A. McGill, A.N. Elliott, T.W. Pierce, Self-Esteem, Locus of Control, College Adjustment, and GPA Among First- and Continuing- Generation Students: A Moderator Model of Generational Status, Res. High. Educ. 53 (2012) 755–781. https://doi.org/10.1007/s11162-011-9252-1. [CrossRef] [Google Scholar]
- O.A. Marzouk, The Sod gasdynamics problem as a tool for benchmarking face flux construction in the finite volume method, Sci. Afr. 10 (2020) e00573. https://doi.org/10.1016/j.sciaf.2020.e00573. [Google Scholar]
- F.M. Alslaiti, S. Al Hirsh, Multiple Intelligences of Al al-Bayt University Students with Reference to Gender, College, and Grade Point Average (GPA), Int. J. Learn. High. Educ. 31 (2024) 57–76. https://doi.org/10.18848/2327-7955/CGP/v31i02/57-76. [CrossRef] [Google Scholar]
- [International Energy Agency] IEA, Global energy-related C01 emissions by sector, (2020). https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector (accessed July 25, 2024). [Google Scholar]
- R. Castro-Munoz, M. Zamidi Ahmad, M. Malankowska, J. Coronas, A new relevant membrane application: C01 direct air capture (DAC), Chem. Eng. J. 446 (2022) 137047. https://doi.org/10.1016/j.cej.2022.137047. [CrossRef] [Google Scholar]
- I. Herath, M. Deurer, D. Horne, R. Singh, B. Clothier, The water footprint of hydroelectricity: a methodological comparison from a case study in New Zealand, J. Clean. Prod. 19 (2011) 1582–1589. https://doi.org/10.1016/j.jclepro.2011.05.007. [CrossRef] [Google Scholar]
- N.G. Paterakis, O. Erdinc, J.P.S. Catalao. An overview of Demand Response: Keyelements and international experience, Renew. Sustain. Energy Rev. 69 (2017) 871–891. https://doi.org/10.1016/j.rser.2016.11.167. [CrossRef] [Google Scholar]
- C. DiMaggio, M. Durkin, L.D. Richardson, The association of light trucks and vans with paediatric pedestrian deaths, Int. J. Inj. Contr. Saf. Promot. 13 (2006) 95–99. https://doi.org/10.1080/17457300500310038. [CrossRef] [PubMed] [Google Scholar]
- T. Beer, T. Grant, D. Williams, H. Watson, Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicles, Atmos. Environ. 36 (2002) 753–763. https://doi.org/10.1016/S1352-2310(01)00514-3. [CrossRef] [Google Scholar]
- K. Jiang, P. Ashworth, The development of Carbon Capture Utilization and Storage (CCUS) research in China: A bibliometric perspective, Renew. Sustain. Energy Rev. 138 (2021) 110521. https://doi.org/10.1016/j.rser.2020.110521. [CrossRef] [Google Scholar]
- L. Zhang, Y. Song, J. Shi, Q. Shen, D. Hu, Q. Gao, W. Chen, K.-W. Kow, C. Pang, N. Sun, W. Wei, Frontiers of C01 Capture and Utilization (CCU) towards Carbon Neutrality, Adv. Atmospheric Sci. 39 (2022) 1252–1270. https://doi.org/10.1007/s00376-022-1467-x. [CrossRef] [Google Scholar]
- M. Fridahl, M. Lehtveer, Bioenergy with carbon capture and storage (BECCS): Global potential, investment preferences, and deployment barriers, Energy Res. Soc. Sci. 42 (2018) 155–165. https://doi.org/10.1016/j.erss.2018.03.019. [CrossRef] [Google Scholar]
- [Fahrhall Home Comfort Specialists] Fahrhall, Heat Pump vs. Gas Furnace: Which Is More Efficient?, (2024). https://fahrhall.com/heat-pump-vs-gas-furnace (accessed July 25, 2024). [Google Scholar]
- [International Energy Agency] IEA, Light industry, (2024). https://www.iea.org/energy-system/industry/light-industry (accessed July 25, 2024). [Google Scholar]
- O.A. Marzouk, Energy Generation Intensity (EGI) of Solar Updraft Tower (SUT) Power Plants Relative to CSP Plants and PV Power Plants Using the New Energy Simulator “Aladdin,” Energies 17 (2024) 405. https://doi.org/10.3390/en17020405. [CrossRef] [Google Scholar]
- S. Capstick, I. Lorenzoni, A. Corner, L. Whitmarsh, Prospects for radical emissions reduction through behavior and lifestyle change, Carbon Manag. 5 (2014) 429–445. https://doi.org/10.1080/17583004.2015.1020011. [CrossRef] [Google Scholar]
- M. Pothitou, A.J. Kolios, L. Varga, S. Gu, A framework for targeting household energy savings through habitual behavioural change, Int. J. Sustain. Energy 35 (2016) 686–700. https://doi.org/10.1080/14786451.2014.936867. [CrossRef] [Google Scholar]
- C. Gough, P. Upham, Biomass energy with carbon capture and storage (BECCS or Bio-CCS), Greenh. Gases Sci. Technol. 1 (2011) 324–334. https://doi.org/10.1002/ghg.34. [CrossRef] [Google Scholar]
- F. Creutzig, K.-H. Erb, H. Haberl, C. Hof, C. Hunsberger, S. Roe, Considering sustainability thresholds for BECCS in IPCC and biodiversity assessments, GCB Bioenergy 13 (2021) 510–515. https://doi.org/10.1111/gcbb.12798. [CrossRef] [Google Scholar]
- A. Lefvert, S. Gronkvist. Lost in the scenarios of negative emissions: The role of bioenergy with carbon capture and storage (BECCS), Energy Policy 184 (2024) 113882. https://doi.org/10.1016/j.enpol.2023.113882. [CrossRef] [Google Scholar]
- M. Fridahl. K. Mollersten. L. Lundberg. W. Rickels. Potential and goal conflicts in reverse auction design for bioenergy with carbon capture and storage (BECCS). Environ. Sci. Eur. 36 (2024) 146. https://doi.org/10.1186/s12302-024-00971-0. [CrossRef] [Google Scholar]
- M.A. Hayat. K. Alhadhrami. A.M. Elshurafa. Which bioenergy with carbon capture and storage (BECCS) pathways can provide net-negative emissions?. Int. J. Greenh. Gas Control 135 (2024) 104164. https://doi.org/10.1016/j.ijggc.2024.104164. [CrossRef] [Google Scholar]
- J.S. Næss, I.M. Henriksen, T.M. Skjølsvold, Bridging Quantitative and Qualitative Science for BECCS in Abandoned Croplands. Earths Future 12 (2024) e2023EF003849. https://doi.org/10.1029/2023EF003849. [CrossRef] [Google Scholar]
- [International Energy Agency] IEA, Data overview, (2024). https://www.iea.org/data-and-statistics/about (accessed July 25, 2024). [Google Scholar]
- [International Energy Agency] IEA, Renewable electricity capacity additions by technology and segment, 2016-2028, (2024). https://www.iea.org/data-and-statistics/charts/renewable-electricity-capacity-additions-by-technology-and-segment-2016-2028 (accessed July 23, 2024). [Google Scholar]
- E. Mariam, B. Ramasubramanian, V. Sumedha Reddy, G.K. Dalapati, S. Ghosh, T.S. Pa, S. Chakrabortty, M.R. Motapothula, A. Kumar, S. Ramakrishna, S. Krishnamurthy, Emerging trends in cooling technologies for photovoltaic systems, Renew. Sustain. Energy Rev. 192 (2024) 114203. https://doi.org/10.1016/j.rser.2023.114203. [CrossRef] [Google Scholar]
- B. Bai, S. Xiong, X. Ma, X. Liao, Assessment of floating solar photovoltaic potential in China, Renew. Energy 220 (2024) 119572. https://doi.org/10.1016/j.renene.2023.119572. [CrossRef] [Google Scholar]
- S. Ganesan, P.W. David, P. Murugesan, P.K. Balachandran, Solar Photovoltaic System Performance Improvement Using a New Fault Identification Technique, Electr. Power Compon. Syst. 52 (2024) 42–54. https://doi.org/10.1080/15325008.2023.2237013. [CrossRef] [Google Scholar]
- F. Kyere, S. Dongying, G.D. Bampoe, N.Y.G. Kumah, D. Asante, Decoding the shift: Assessing household energy transition and unravelling the reasons for resistance or adoption of solar photovoltaic, Technol. Forecast. Soc. Change 198 (2024) 123030. https://doi.org/10.1016/j.techfore.2023.123030. [CrossRef] [Google Scholar]
- A.O.M. Maka, T.N. Chaudhary, G. Alaswad, O. Elsayah, Applications of solar photovoltaics in powering cathodic protection systems: a review, Clean Technol. Environ. Policy 26 (2024) 2755–2776. https://doi.org/10.1007/s10098-024-02750-0. [CrossRef] [Google Scholar]
- M. Khaleel, M. Elbar, Exploring the Rapid Growth of Solar Photovoltaics in the European Union, Int J Electr Eng Sustain (2024) 61–68. [Google Scholar]
- W. Jiang, T. Wang, D. Yuan, A. Sha, S. Zhang, Y. Zhang, J. Xiao, C. Xing, Available solar resources and photovoltaic system planning strategy for highway, Renew. Sustain. Energy Rev. 203 (2024) 114765. https://doi.org/10.1016/j.rser.2024.114765. [CrossRef] [Google Scholar]
- Z. Ngagoum Ndalloka, H. Vijayakumar Nair, S. Alpert, C. Schmid, Solar photovoltaic recycling strategies, Sol. Energy 270 (2024) 112379. https://doi.org/10.1016/j.solener.2024.112379. [CrossRef] [Google Scholar]
- D. Graczyk, I. Pinskwar, A. Chorynski, R. Stasik, Less power when more is needed. Climate-related current and possible future problems of the wind energy sector in Poland, Renew. Energy 232 (2024) 121093. https://doi.org/10.1016/j.renene.2024.121093. [CrossRef] [Google Scholar]
- A. Martinez, G. Iglesias, Global wind energy resources decline under climate change, Energy 288 (2024) 129765. https://doi.org/10.1016/j.energy.2023.129765. [CrossRef] [Google Scholar]
- O.A. Marzouk, E.D. Huckaby, Modeling Confined Jets with Particles and Swril, in: S.-I. Ao, B. Rieger, M.A. Amouzegar (Eds.), Mach. Learn. Syst. Eng., Springer Netherlands, Dordrecht, 2010: pp. 243–256. https://doi.org/10.1007/978-90-481-9419-3_19. [Google Scholar]
- S. Boadu, E. Otoo, A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations, Renew. Sustain. Energy Rev. 191 (2024) 114035. https://doi.org/10.1016/j.rser.2023.114035. [CrossRef] [Google Scholar]
- A. Martinez, G. Iglesias, Techno-economic assessment of potential zones for offshore wind energy: A methodology, Sci. Total Environ. 909 (2024) 168585. https://doi.org/10.1016/j.scitotenv.2023.168585. [CrossRef] [Google Scholar]
- S. Ramakrishnan, M. Delpisheh, C. Convery, D. Niblett, M. Vinothkannan, M. Mamlouk, Offshore green hydrogen production from wind energy: Critical review and perspective, Renew. Sustain. Energy Rev. 195 (2024) 114320. https://doi.org/10.1016/j.rser.2024.114320. [CrossRef] [Google Scholar]
- O. Ruhnau, A. Eicke, R. Sgarlato, T. Trondle, L. Hirth, Cost-Potential Curves of Onshore Wind Energy: the Role of Disamenity Costs, Environ. Resour. Econ. 87 (2024) 347–368. https://doi.org/10.1007/s10640-022-00746-2. [CrossRef] [Google Scholar]
- S. Miyake, S. Teske, J. Rispler, M. Feenstra, Solar and wind energy potential under land-resource constrained conditions in the Group of Twenty (G20), Renew. Sustain. Energy Rev. 202 (2024) 114622. https://doi.org/10.1016/j.rser.2024.114622. [CrossRef] [Google Scholar]
- P. Yanez-Rosales, B.D. Rio-Gamero. J. Schallenberg-Rodriguez. Rationale for selecting the most suitable areas for offshore wind energy farms in isolated island systems. Case study: Canary Islands, Energy 307 (2024) 132589. https://doi.org/10.1016/j.energy.2024.132589. [CrossRef] [Google Scholar]
- H. Shao, R. Henriques, H. Morais, E. Tedeschi, Power quality monitoring in electric grid integrating offshore wind energy: A review, Renew. Sustain. Energy Rev. 191 (2024) 114094. https://doi.org/10.1016/j.rser.2023.114094. [CrossRef] [Google Scholar]
- A. Boretti, S. Castelletto, Hydrogen energy storage requirements for solar and wind energy production to account for long-term variability, Renew. Energy 221 (2024) 119797. https://doi.org/10.1016/j.renene.2023.119797. [CrossRef] [Google Scholar]
- A.D.A. Bin Abu Sofian, H.R. Lim, H. Siti Halimatul Munawaroh, Z. Ma, K.W. Chew, P.L. Show, Machine learning and the renewable energy revolution: Exploring solar and wind energy solutions for a sustainable future including innovations in energy storage, Sustain. Dev. 32 (2024) 3953–3978. https://doi.org/10.1002/sd.2885. [CrossRef] [Google Scholar]
- A. Ali, S. Ali, H. Shaukat, E. Khalid, L. Behram, H. Rani, W.A. Altabey, S.A. Kouritem, M. Noori, Advancements in piezoelectric wind energy harvesting: A review, Results Eng. 21 (2024) 101777. https://doi.org/10.1016/j.rineng.2024.101777. [CrossRef] [Google Scholar]
- A.F.M.K. Chowdhury, T. Wild, Y. Zhang, M. Binsted, G. Iyer, S.H. Kim, J. Lamontagne, Hydropower expansion in eco-sensitive river basins under global energy-economic change, Nat. Sustain. 7 (2024) 213–222. https://doi.org/10.1038/s41893-023-01260-z. [CrossRef] [Google Scholar]
- D. Mlynski, L. Ksiazek. A. Bogdal. Meteorological drought effect for Central Europe’s hydropower potential, Renew. Sustain. Energy Rev. 191 (2024) 114175. https://doi.org/10.1016/j.rser.2023.114175. [CrossRef] [Google Scholar]
- R.J.P. Schmitt. L. Rosa. Dams for hydropower and irrigation: Trends. challenges. and alternatives. Renew. Sustain. Energy Rev. 199 (2024) 114439. https://doi.org/10.1016/j.rser.2024.114439. [CrossRef] [Google Scholar]
- J.M. Kwakye. D.E. Ekechukwu. O.B. Ogundipe. Systematic review of the economic impacts of bioenergy on agricultural markets. Int. J. Adv. Econ. 6 (2024) 306–318. https://doi.org/10.51594/ijae.v6i7.1342. [CrossRef] [Google Scholar]
- M. Chen. Y. Chen. Q. Zhang. Assessing global carbon sequestration and bioenergy potential from microalgae cultivation on marginal lands leveraging machine learning. Sci. Total Environ. 948 (2024) 174462. https://doi.org/10.1016/j.scitotenv.2024.174462. [CrossRef] [Google Scholar]
- U. Rusilowati. H.R. Ngemba. R.W. Anugrah. A. Fitriani. E.D. Astuti. Leveraging AI for Superior Efficiency in Energy Use and Development of Renewable Resources such as Solar Energy. Wind. and Bioenergy. Int. Trans. Artif. Intell. 2 (2024) 114–120. https://doi.org/10.33050/italic.v2i2.537. [Google Scholar]
- O.A. Marzouk. Jatropha Curcas as Marginal Land Development Crop in the Sultanate of Oman for Producing Biodiesel. Biogas. Biobriquettes. Animal Feed. and Organic Fertilizer. Rev. Agric. Sci. 8 (2020) 109–123. https://doi.org/10.7831/ras.8.0_109. [Google Scholar]
- B.R. Babaniyi. O.D. Ogundele. T.O. Abe. B.R. Olowoyeye. J.O. Jayeola. D.A. Oyegoke. J.I. Adebomi. O.E. Daramola. Chapter 6 - Bioenergy: the environmentalist’s perspectives. in: N.R. Maddela. S.A. Aransiola. C.I. Ezugwu. L.K. Winkelstroter Eller. L. Scalvenzi. F. Meng (Eds.). Microb. Biotechnol. Bioenergy. Elsevier. 2024: pp. 97–113. https://doi.org/10.1016/B978-0-443-14112-6.00006-7. [Google Scholar]
- J. Schelhas. S. Hitchner. J.P. Brosius. What family forest owners talk about when they talk about trees: Bioenergy and forest landscapes in the U.S. South. Trees For. People 17 (2024) 100606. https://doi.org/10.1016/j.tfp.2024.100606. [CrossRef] [Google Scholar]
- M. Martins. F. Sousa. C. Soares. B. Sousa. R. Pereira. M. Rubal. F. Fidalgo. Beach wrack: Discussing ecological roles. risks. and sustainable bioenergy and agricultural applications, J. Environ. Manage. 356 (2024) 120526. https://doi.org/10.1016/j.jenvman.2024.120526. [CrossRef] [Google Scholar]
- G.M. Idroes, I. Hardi, I.S. Hilal, R.T. Utami, T.R. Noviandy, R. Idroes, Economic growth and environmental impact: Assessing the role of geothermal energy in developing and developed countries, Innov. Green Dev. 3 (2024) 100144. https://doi.org/10.1016/j.igd.2024.100144. [CrossRef] [Google Scholar]
- M. Hamlehdar, G. Beardsmore, G.A. Narsilio, Hydrogen production from low- temperature geothermal energy - A review of opportunities, challenges, and mitigating solutions, Int. J. Hydrog. Energy 77 (2024) 742–768. https://doi.org/10.1016/j.ijhydene.2024.06.104. [CrossRef] [Google Scholar]
- N.A. Pambudi, D.K. Ulfa, The geothermal energy landscape in Indonesia: A comprehensive 2023 update on power generation, policies, risks, phase and the role of education, Renew. Sustain. Energy Rev. 189 (2024) 114008. https://doi.org/10.1016/j.rser.2023.114008. [CrossRef] [Google Scholar]
- [International Energy Agency] IEA, Technology Roadmap - Concentrating Solar Power, Paris, 2010. https://iea.blob.core.windows.net/assets/663fabad-397e-4518-802f-7f1c94bc2076/csp_roadmap.pdf (accessed July 25, 2024). [Google Scholar]
- H.L. Zhang, J. Baeyens, J. Degrève, G. Cacères, Concentrated solar power plants: Review and design methodology, Renew. Sustain. Energy Rev. 22 (2013) 466–481. https://doi.org/10.1016/j.rser.2013.01.032. [CrossRef] [Google Scholar]
- A. Peinado Gonzalo, A. Pliego Marugán, F.P. García Márquez, A review of the application performances of concentrated solar power systems, Appl. Energy 255 (2019) 113893. https://doi.org/10.1016/j.apenergy.2019.113893. [CrossRef] [Google Scholar]
- O.A. Marzouk, Land-Use competitiveness of photovoltaic and concentrated solar power technologies near the Tropic of Cancer, Sol. Energy 243 (2022) 103–119. https://doi.org/10.1016/j.solener.2022.07.051. [CrossRef] [Google Scholar]
- F.M. Abir, Q. Altwarah, M.T. Rana, D. Shin, Recent Advances in Molten Salt-Based Nanofluids as Thermal Energy Storage in Concentrated Solar Power: A Comprehensive Review, Materials 17 (2024) 955. https://doi.org/10.3390/ma17040955. [CrossRef] [PubMed] [Google Scholar]
- Y. Han, Y. Sun, J. Wu, An efficient and low-cost solar-aided lignite drying power generation system based on cascade utilisation of concentrating and nonconcentrating solar energy, Energy 289 (2024) 129932. https://doi.org/10.1016/j.energy.2023.129932. [CrossRef] [Google Scholar]
- G. Li, G. Du, G. Liu, J. Yan, Study on the dynamic characteristics, control strategies and load variation rates of the concentrated solar power plant, Appl. Energy 357 (2024) 122538. https://doi.org/10.1016/j.apenergy.2023.122538. [CrossRef] [Google Scholar]
- O.A. Marzouk, Energy Generation Intensity (EGI) for Parabolic Dish/Engine Concentrated Solar Power in Muscat, Sultanate of Oman, IOP Conf. Ser. Earth Environ. Sci. 1008 (2022) 012013. https://doi.org/10.1088/1755-1315/1008/1/012013. [CrossRef] [Google Scholar]
- S. Naaim, B. Ouhammou, M. Aggour, B. Daouchi, E.M. El Mers, M. Mihi, MultiUtility Solar Thermal Systems: Harnessing Parabolic Trough Concentrator Using SAM Software for Diverse Industrial and Residential Applications, Energies 17 (2024) 3685. https://doi.org/10.3390/en17153685. [CrossRef] [Google Scholar]
- V. Palladino, M. Di Somma, C. Cancro, W. Gaggioli, M. De Lucia, M. D’Auria, M. Lanchi, F. Bassetti, C. Bevilacqua, S. Cardamone, F. Nana, F.M. Montagnino, G. Graditi, Innovative Industrial Solutions for Improving the Technical/Economic Competitiveness of Concentrated Solar Power, Energies 17 (2024) 360. https://doi.org/10.3390/en17020360. [CrossRef] [Google Scholar]
- O.A. Marzouk, Facilitating Digital Analysis and Exploration in Solar Energy Science and Technology through Free Computer Applications, in: ASEC 2022, MDPI, 2022: p. 75. https://doi.org/10.3390/ASEC2022-13920. [CrossRef] [Google Scholar]
- D.S. Jayathunga, H.P. Karunathilake, M. Narayana, S. Witharana, Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review, Renew. Sustain. Energy Rev. 189 (2024) 113904. https://doi.org/10.1016/j.rser.2023.113904. [CrossRef] [Google Scholar]
- A. Hadidi, Thermodynamic design of the novel energy storage system based on liquid carbon dioxide for a 17 MW concentrated solar thermal power plant, J. Energy Storage 83 (2024) 110761. https://doi.org/10.1016/j.est.2024.110761. [CrossRef] [Google Scholar]
- [International Energy Agency] IEA, Renewable energy - Technology collaboration, Relat. Renew. Energy Sources Hydrog. Bioenergy Sol. Wind Geotherm. Hydropower Ocean Energy (2024). https://www.iea.org/about/technology-collaboration/renewable-energy (accessed July 25, 2024). [Google Scholar]
- X. Ju, C. Xu, Y. Hu, X. Han, G. Wei, X. Du, A review on the development of photovoltaic/concentrated solar power (PV-CSP) hybrid systems, Sol. Energy Mater. Sol. Cells 161 (2017) 305–327. https://doi.org/10.1016/j.solmat.2016.12.004. [CrossRef] [Google Scholar]
- O.A. Marzouk, A.H. Nayfeh, A Study of the Forces on an Oscillating Cylinder, in: American Society of Mechanical Engineers Digital Collection, 2009: pp. 741–752. https://doi.org/10.1115/OMAE2007-29163. [Google Scholar]
- L.A. Vega, Ocean Thermal Energy Conversion Primer, Mar. Technol. Soc. J. 36 (2002) 25–35. https://doi.org/10.4031/002533202787908626. [CrossRef] [Google Scholar]
- Z. Zhang, H. Yuan, S. Yi, Y. Sun, W. Peng, N. Mei, Theoretical analysis on temperature-lifting cycle for ocean thermal energy conversion, Energy Convers. Manag. 300 (2024) 117946. https://doi.org/10.1016/j.enconman.2023.117946. [CrossRef] [Google Scholar]
- O.A. Marzouk, A.H. Nayfeh, Reduction of the loads on a cylinder undergoing harmonic in-line motion, Phys. Fluids 21 (2009) 083103. https://doi.org/10.1063/1.3210774. [CrossRef] [Google Scholar]
- C. Fan, C. Zhang, W. Gao, Improving the ocean thermal energy conversion by solar pond, Sol. Energy 274 (2024) 112583. https://doi.org/10.1016/j.solener.2024.112583. [CrossRef] [Google Scholar]
- R.D. Fuller, Ocean thermal energy conversion, Ocean Manag. 4 (1978) 241–258. https://doi.org/10.1016/0302-184X(78)90026-4. [CrossRef] [Google Scholar]
- O.A. Marzouk, A.H. Nayfeh, Characterization of the flow over a cylinder moving harmonically in the cross-flow direction, Int. J. Non-Linear Mech. 45 (2010) 821–833. https://doi.org/10.1016/j.ijnonlinmec.2010.06.004. [CrossRef] [Google Scholar]
- D. Tanner, Ocean thermal energy conversion: Current overview and future outlook, Renew. Energy 6 (1995) 367–373. https://doi.org/10.1016/0960-1481(95)00024-E. [CrossRef] [Google Scholar]
- C. Xiao, Z. Hu, Y. Chen, C. Zhang, Thermodynamic, economic, exergoeconomic analysis of an integrated ocean thermal energy conversion system, Renew. Energy 225 (2024) 120194. https://doi.org/10.1016/j.renene.2024.120194. [CrossRef] [Google Scholar]
- O.A. Marzouk, A Nonlinear ODE System for the Unsteady Hydrodynamic Force - A New Approach, World Acad. Sci. Eng. Technol. 39 (2009) 948–962. [Google Scholar]
- W. Gao, F. Wang, Z. Tian, Y. Zhang, Experimental investigation on the performance of a Solar-Ocean Thermal Energy Conversion system based on the Organic Rankine Cycle, Appl. Therm. Eng. 245 (2024) 122776. https://doi.org/10.1016/j.applthermaleng.2024.122776. [CrossRef] [Google Scholar]
- C. Zhang, S. Yang, X. Dai, Y. Tu, Z. Du, X. Wu, Y. Huang, J. Fan, Z. Hong, T. Jiang, Z.L. Wang, Hybridized triboelectric-electromagnetic nanogenerators for efficient harvesting of wave energy for self-powered ocean buoy, Nano Energy 128 (2024) 109929. https://doi.org/10.1016/j.nanoen.2024.109929. [CrossRef] [Google Scholar]
- T. Rezaei, A. Javadi, Environmental impact assessment of ocean energy converters using quantum machine learning, J. Environ. Manage. 362 (2024) 121275. https://doi.org/10.1016/j.jenvman.2024.121275. [CrossRef] [Google Scholar]
- I.W. Ock, J. Yin, S. Wang, X. Zhao, J.M. Baik, J. Chen, Advances in Blue Energy Fuels: Harvesting Energy from Ocean for Self-Powered Electrolysis, Adv. Energy Mater. n/a (n.d.) 2400563. https://doi.org/10.1002/aenm.202400563. [Google Scholar]
- O.A. Marzouk, Changes in fluctuation waves in coherent airflow structures with input perturbation, WSEAS Trans. Signal Process. 4 (2008) 604–614. [Google Scholar]
- S. Yang, C. Zhang, Z. Du, Y. Tu, X. Dai, Y. Huang, J. Fan, Z. Hong, T. Jiang, Z.L. Wang, Fluid Oscillation-Driven Bi-Directional Air Turbine Triboelectric Nanogenerator for Ocean Wave Energy Harvesting, Adv. Energy Mater. 14 (2024) 2304184. https://doi.org/10.1002/aenm.202304184. [CrossRef] [Google Scholar]
- R. Simbolon, W. Sihotang, J. Sihotang, Tapping Ocean Potential: Strategies for integrating tidal and wave energy into national power grids, GEMOY Green Energy Manag. Optim. Yields 1 (2024) 49–65. [Google Scholar]
- O.A. Marzouk, One-way and two-way couplings of CFD and structural models and application to the wake-body interaction, Appl. Math. Model. 35 (2011) 1036–1053. https://doi.org/10.1016/j.apm.2010.07.049. [CrossRef] [Google Scholar]
- D. Colorado-Garrido, E. Mendoza-Bernal, L.M. Toledo-Paz, B.A. Escobedo-Trujillo, An Ocean Thermal Energy Conversion power plant: Advanced exergy analysis and experimental validation, Renew. Energy 223 (2024) 120018. https://doi.org/10.1016/j.renene.2024.120018. [CrossRef] [Google Scholar]
- S. Hoseinzadeh, M. Asadi PaeinLamouki, D.A. Garcia, Thermodynamic analysis of heat storage of ocean thermal energy conversion integrated with a two-stage turbine by thermal power plant condenser output water, J. Energy Storage 84 (2024) 110818. https://doi.org/10.1016/j.est.2024.110818. [CrossRef] [Google Scholar]
- O.A. Marzouk, Characteristics of the Flow-Induced Vibration and Forces With 1- and 2-DOF Vibrations and Limiting Solid-to-Fluid Density Ratios, J. Vib. Acoust. 132 (2010) 041013. https://doi.org/10.1115/1.4001503. [CrossRef] [Google Scholar]
- Z. Hu, Y. Chen, C. Zhang, Role of R717 blends in ocean thermal energy conversion organic Rankine cycle, Renew. Energy 221 (2024) 119756. https://doi.org/10.1016/j.renene.2023.119756. [CrossRef] [Google Scholar]
- A. Rashid, T.H. Nakib, T. Shahriar, M.A. Habib, M. Hasanuzzaman, Energy and economic analysis of an ocean thermal energy conversion plant for Bangladesh: A case study, Ocean Eng. 293 (2024) 116625. https://doi.org/10.1016/j.oceaneng.2023.116625. [CrossRef] [Google Scholar]
- O.A. Marzouk, Direct Numerical Simulations of the Flow Past a Cylinder Moving With Sinusoidal and Nonsinusoidal Profiles, J. Fluids Eng. 131 (2009) 121201. https://doi.org/10.1115/1.4000406. [CrossRef] [Google Scholar]
- A. Ghilardi, A. Baccioli, G.F. Frate, M. Volpe, L. Ferrari, Integration of ocean thermal energy conversion and pumped thermal energy storage: system design, off- design and LCOS evaluation, Appl. Therm. Eng. 236 (2024) 121551. https://doi.org/10.1016/j.applthermaleng.2023.121551. [CrossRef] [Google Scholar]
- P. Chen, D. Wu, A review of hybrid wave-tidal energy conversion technology, Ocean Eng. 303 (2024) 117684. https://doi.org/10.1016/j.oceaneng.2024.117684. [CrossRef] [Google Scholar]
- O.A. Marzouk, A.H. Nayfeh, New Wake Models With Capability of Capturing Nonlinear Physics, in: American Society of Mechanical Engineers Digital Collection, 2009: pp. 901–912. https://doi.org/10.1115/OMAE2008-57714. [Google Scholar]
- J. Thiebot, M. Sedrati. S. Guillou. The Potential of Tidal Energy Production in a Narrow Channel: The Gulf of Morbihan, J. Mar. Sci. Eng. 12 (2024) 479. https://doi.org/10.3390/jmse12030479. [CrossRef] [Google Scholar]
- L.C. Laurindo. L. Siqueira. R.J. Small. L. Thompson. B.P. Kirtman. Quantifying the Contribution of Ocean Advection and Surface Flux to the Upper-Ocean Salinity Variability Resolved by Climate Model Simulations. Geophys. Res. Lett. 51 (2024) e2023GL106354. https://doi.org/10.1029/2023GL106354. [CrossRef] [Google Scholar]
- O.A. Marzouk. A.H. Nayfeh. Loads on a Harmonically Oscillating Cylinder. in: American Society of Mechanical Engineers Digital Collection. 2009: pp. 1755–1774. https://doi.org/10.1115/DETC2007-35562. [Google Scholar]
- A. Korte. C. Windt. N. Goseberg. Review and assessment of the German tidal energy resource. J. Ocean Eng. Mar. Energy 10 (2024) 239–261. https://doi.org/10.1007/s40722-023-00309-7. [CrossRef] [Google Scholar]
- D.R. Noble. K. Grattan. H. Jeffrey. Assessing the Costs of Commercialising Tidal Energy in the UK. Energies 17 (2024) 2085. https://doi.org/10.3390/en17092085. [CrossRef] [Google Scholar]
- O.A. Marzouk. A.H. Nayfeh. Hydrodynamic Forces on a Moving Cylinder with Time-Dependent Frequency Variations. in: 46th AIAA Aerosp. Sci. Meet. Exhib. American Institute of Aeronautics and Astronautics. Reno. Nevada. 2008: p. AIAA 2008-680. https://doi.org/10.2514/6.2008-680. [Google Scholar]
- M. Bianchi, I.F. Fernandez, A systematic methodology to assess local economic impacts of ocean renewable energy projects: Application to a tidal energy farm, Renew. Energy 221 (2024) 119853. https://doi.org/10.1016/j.renene.2023.119853. [CrossRef] [Google Scholar]
- D. Mo, Q. He, W. Zhan, Y. He, H. Zhan, A Global Assessment of Eddy-Induced Salinity Anomalies and Salt Transport by Eddy Movement, J. Geophys. Res. Oceans 129 (2024) e2023JC020382. https://doi.org/10.1029/2023JC020382. [CrossRef] [Google Scholar]
- H.E. Moon, S.W. Choi, Y.H. Ha, Prioritizing factors for the sustainable growth of Vietnam’s solar photovoltaic power market, Energy Environ. 35 (2024) 2151–2177. https://doi.org/10.1177/0958305X221146944. [CrossRef] [Google Scholar]
- Q. Hassan, S. Algburi, A.Z. Sameen, T.J. Al-Musawi, A.K. Al-Jiboory, H.M. Salman, B.M. Ali, M. Jaszczur, A comprehensive review of international renewable energy growth, Energy Built Environ. (2024) S2666123323001186. https://doi.org/10.1016/j.enbenv.2023.12.002. [Google Scholar]
- N.K. Bakhriddinovich, Analysis of the Problems of the Development of Photovoltaic Solar Power Plants in Uzbekistan, 7 (2024) 1–8. https://doi.org/10.5281/ZENODO.10946782. [Google Scholar]
- [International Energy Agency] IEA, Net renewable capacity additions by technology, 2020-2022, (2021). https://www.iea.org/data-and-statistics/charts/net-renewable-capacity-additions-by-technology-2020-2022 (accessed July 25, 2024). [Google Scholar]
- J. Jean, P.R. Brown, R.L. Jaffe, T. Buonassisi, V. Bulovic, Pathways for solar photovoltaics, Energy Environ. Sci. 8 (2015) 1200–1219. https://doi.org/10.1039/C4EE04073B. [CrossRef] [Google Scholar]
- O.A. Marzouk, Lookup Tables for Power Generation Performance of Photovoltaic Systems Covering 40 Geographic Locations (Wilayats) in the Sultanate of Oman, with and without Solar Tracking, and General Perspectives about Solar Irradiation, Sustainability 13 (2021) 13209. https://doi.org/10.3390/su132313209. [CrossRef] [Google Scholar]
- T.M. Letcher, Why Solar Energy?, in: Compr. Guide Sol. Energy Syst., Elsevier, 2018: pp. 3–16. https://doi.org/10.1016/B978-0-12-811479-7.00001-4. [CrossRef] [Google Scholar]
- O.A. Marzouk, Tilt sensitivity for a scalable one-hectare photovoltaic power plant composed of parallel racks in Muscat, Cogent Eng. 9 (2022) 2029243. https://doi.org/10.1080/23311916.2022.2029243. [CrossRef] [Google Scholar]
- X. Fang, D. Li, Solar photovoltaic and thermal technology and applications in China, Renew. Sustain. Energy Rev. 23 (2013) 330–340. https://doi.org/10.1016/j.rser.2013.03.010. [CrossRef] [Google Scholar]
- D.B. Richardson, L.D.D. Harvey, Strategies for correlating solar PV array production with electricity demand, Renew. Energy 76 (2015) 432–440. https://doi.org/10.1016/j.renene.2014.11.053. [CrossRef] [Google Scholar]
- V. Vega-Garita, D. De Lucia, N. Narayan, L. Ramirez-Elizondo, P. Bauer, PV-battery integrated module as a solution for off-grid applications in the developing world, in: 2018 IEEE Int. Energy Conf. ENERGYCON, IEEE, Limassol, 2018: pp. 1–6. https://doi.org/10.1109/ENERGYCON.2018.8398764. [Google Scholar]
- S. Dorel, M. Gmal Osman, C.-V. Strejoiu, G. Lazaroiu, Exploring Optimal Charging Strategies for Off-Grid Solar Photovoltaic Systems: A Comparative Study on Battery Storage Techniques, Batteries 9 (2023) 470. https://doi.org/10.3390/batteries9090470. [CrossRef] [Google Scholar]
- P. Gopi, M. Ramesh, M.P. Lalitha, Practical design of an Off-grid Solar PV system for Domestic application, in: 2021 IEEE Madras Sect. Conf. MASCON, IEEE, Chennai, India, 2021: pp. 1–6. https://doi.org/10.1109/MASCON51689.2021.9563391. [Google Scholar]
- P. Mohanty, T. Muneer, M. Kolhe, eds., Solar Photovoltaic System Applications: A Guidebook for Off-Grid Electrification, Springer International Publishing, Cham, 2016. https://doi.org/10.1007/978-3-319-14663-8. [CrossRef] [Google Scholar]
- G.O. Ogunsiji, O.O. Alabi, T.O. Akande, Energy Storage Solutions for Enhanced Performance in Off-Grid Solar Systems in Abuja, Nigeria, Zhongguo Kuangye Daxue Xuebao 29 (2024) 49–61. [Google Scholar]
- H.-C. Chung, The Long-Term Usage of an Off-Grid Photovoltaic System with a Lithium-Ion Battery-Based Energy Storage System on High Mountains: A Case Study in Paiyun Lodge on Mt. Jade in Taiwan, Batteries 10 (2024) 202. https://doi.org/10.3390/batteries10060202. [CrossRef] [Google Scholar]
- N.M. Nasab, S. Yazdanian, The advantages of lead-acid battery for off-grid design, Energy Storage 6 (2024) e595. https://doi.org/10.1002/est2.595. [CrossRef] [Google Scholar]
- D. Kalke, K. Kokkonda, P. Kulkarni, Financial Analysis of Grid-tied Rooftop Solar Photovoltaic System employing Net-Metering, in: 2018 Int. Conf. Smart Electr. Drives Power Syst. ICSEDPS, IEEE, Nagpur, 2018: pp. 87–92. https://doi.org/10.1109/ICSEDPS.2018.8536037. [CrossRef] [Google Scholar]
- N. Sommerfeldt, J.M. Pearce, Can grid-tied solar photovoltaics lead to residential heating electrification? A techno-economic case study in the midwestern U.S., Appl. Energy 336 (2023) 120838. https://doi.org/10.1016/j.apenergy.2023.120838. [CrossRef] [Google Scholar]
- J.M. Pearce, N. Sommerfeldt, Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada, Energies 14 (2021) 834. https://doi.org/10.3390/en14040834. [CrossRef] [Google Scholar]
- S. Bimenyimana, G.N.O. Asemota, P.J. Ihirwe, Optimization Comparison of StandAlone and Grid-Tied Solar PV Systems in Rwanda, OALib 05 (2018) 1–18. https://doi.org/10.4236/oalib.1104603. [CrossRef] [Google Scholar]
- [International Energy Agency] IEA, Electric car sales, 2012-2024, (2024). https://www.iea.org/data-and-statistics/charts/electric-car-sales-2012-2024 (accessed July 25, 2024). [Google Scholar]
- J.A. Sanguesa, V. Torres-Sanz, P. Garrido, F.J. Martinez, J.M. Marquez-Barja, A Review on Electric Vehicles: Technologies and Challenges, Smart Cities 4 (2021) 372–404. https://doi.org/10.3390/smartcities4010022. [CrossRef] [Google Scholar]
- O.A. Marzouk, Directivity and Noise Propagation for Supersonic Free Jets, in: 46th AIAA Aerosp. Sci. Meet. Exhib., American Institute of Aeronautics and Astronautics, Reno, Nevada, 2008. https://doi.org/10.2514/6.2008-23. [Google Scholar]
- J.N. Barkenbus, Prospects for Electric Vehicles, Sustainability 12 (2020) 5813. https://doi.org/10.3390/su12145813. [CrossRef] [Google Scholar]
- T. Lieven, B. Hugler, Did Electric Vehicle Sales Skyrocket Due to Increased Environmental Awareness While Total Vehicle Sales Declined during COVID-19?, Sustainability 13 (2021) 13839. https://doi.org/10.3390/su132413839. [CrossRef] [Google Scholar]
- O.A. Marzouk, Investigation of Strouhal number effect on acoustic fields, in: INTER-NOISE NOISE-CON Congr. Conf. Proc., INCE [Institute of Noise Control Engineering], Reno, Nevada, USA, 2007: pp. 1–12. [Google Scholar]
- S.Z. Rajper, J. Albrecht, Prospects of Electric Vehicles in the Developing Countries: A Literature Review, Sustainability 12 (2020) 1906. https://doi.org/10.3390/su12051906. [CrossRef] [Google Scholar]
- O.A. Marzouk, Noise emissions from excited jets, in: INTER-NOISE NOISE-CON Congr. Conf. Proc., INCE [Institute of Noise Control Engineering], Reno, Nevada, USA, 2007: pp. 1374–1385. [Google Scholar]
- C.M. Costa, J.C. Barbosa, H. Castro, R. GonQalves, S. Lanceros-Mendez, Electric vehicles: To what extent are environmentally friendly and cost effective? - Comparative study by european countries, Renew. Sustain. Energy Rev. 151 (2021) 111548. https://doi.org/10.1016/j.rser.2021.111548. [CrossRef] [Google Scholar]
- [International Energy Agency] IEA, Global residential lighting sales share by technology in the Net Zero Scenario, 2010-2030, (2023). https://www.iea.org/data-and-statistics/charts/global-residential-lighting-sales-share-by-technology-in-the-net-zero-scenario-2010-2030 (accessed July 25, 2024). [Google Scholar]
- [International Energy Agency] IEA, Lighting efficacy by technology in the Net Zero Scenario, 2010-2030, (2023). https://www.iea.org/data-and-statistics/charts/lighting- efficacy-by-technology-in-the-net-zero-scenario-2010-2030 (accessed July 23, 2024). [Google Scholar]
- P. Mahmoudzadeh, W. Hu, W. Davis, D. Durmus, Spatial efficiency: An outset of lighting application efficacy for indoor lighting, Build. Environ. 255 (2024) 111409. https://doi.org/10.1016/j.buildenv.2024.111409. [CrossRef] [Google Scholar]
- J. Silva, J.F.G. Mendes, L.T. Silva, Assessment of energy efficiency in street lighting design, in: La Coruna, Spain, 2010: pp. 705–715. https://doi.org/10.2495/SC100601. [Google Scholar]
- A.M. Srivastava, M.G. Brik, C.-G. Ma, W.W. Beers, W.E. Cohen, M. Piasecki, Effect of Covalence and Degree of Cation Order on the Luminous Efficacy of Mn4+ Luminescence in the Double Perovskites, Ba2BTa06 (B = Y, Lu, Sc), J. Phys. Chem. Lett. 15 (2024) 4175–4184. https://doi.org/10.1021/acs.jpclett.4c00205. [CrossRef] [Google Scholar]
- Y.J. Park, T.W. Kang, J. Hwang, J.H. Kim, S.W. Kim, Improving of the luminous efficacy of the YAG:Ce phosphor in glass by doping with the transition metals into the glass frits, J. Korean Ceram. Soc. 61 (2024) 137–141. https://doi.org/10.1007/s43207-023-00348-8. [CrossRef] [Google Scholar]
- C. Kang, M.F. Prodanov, J. Song, K. Mallem, Z. Liao, V.V. Vashchenko, A.K. Srivastava, Robust, Narrow-Band Nanorods LEDs with Luminous Efficacy > 200 lm/W: Next-Generation of Efficient Solid-State Lighting, Small n/a (n.d.) 2311671. https://doi.org/10.1002/smll.202311671. [Google Scholar]
- M.I. Dieste-Velasco, I. Garcia-Ruiz, D. Gonzalez-Pena, C. Alonso-Tristan, Two new models of direct luminous efficacy under clear sky conditions for daylighting in Burgos, Spain, Renew. Energy 231 (2024) 120926. https://doi.org/10.1016/j.renene.2024.120926. [Google Scholar]
- Y.-P. Lin, X. Lu, Z. Zhang, X. Qi, J. Jin, J. Xu, Y. Wu, Y. Wu, Z. Deng, X.-Y. Huang, C. Han, S. Hu, K.-Z. Du, Organic hybrid tetranuclear clusteroluminogens: Blue-light-excitable LED with ultrahigh luminous efficacy, Chem. Eng. J. 479 (2024) 147523. https://doi.org/10.1016/j.cej.2023.147523. [CrossRef] [Google Scholar]
- M.-H. Chang, D. Das, P.V. Varde, M. Pecht, Light emitting diodes reliability review, Microelectron. Reliab. 52 (2012) 762–782. https://doi.org/10.1016/j.microrel.2011.07.063. [CrossRef] [Google Scholar]
- C.M. Bourget, An Introduction to Light-emitting Diodes, HortScience 43 (2008) 1944–1946. https://doi.org/10.21273/HORTSCI.43.7.1944. [CrossRef] [Google Scholar]
- E.F. Schubert, Light-Emitting Diodes, 3rd Edition, E. Fred Schubert, Troy, New York, USA, 2018. [Google Scholar]
- A.A. Bergh, P.J. Dean, Light-emitting diodes, Proc. IEEE 60 (1972) 156–223. https://doi.org/10.1109/PROC.1972.8592. [CrossRef] [Google Scholar]
- L.M. van der Krabben, N. Gruginskie, M. van Eerden, J. van Gastel, P. Mulder, G.J. Bauhuis, D. Khusyainov, D. Afanasiev, E. Vlieg, J.J. Schermer, Reduced Surface Recombination in Extended-Perimeter LEDs toward Electroluminescent Cooling, ACS Appl. Electron. Mater. 6 (2024) 1483–1492. https://doi.org/10.1021/acsaelm.3c01816. [CrossRef] [Google Scholar]
- Y. Qian, E.-L. Hsiang, Y.-H. Huang, K.-H. Lin, S.-T. Wu, High-Efficiency VerticalChip Micro-Light-Emitting Diodes via p-GaN Optimization and Surface Passivation, Crystals 14 (2024) 503. https://doi.org/10.3390/cryst14060503. [CrossRef] [Google Scholar]
- Y. Zhang, B. Liao, F. Li, A.E. Eneji, M. Du, X. Tian, Growth, leaf anatomy, and photosynthesis of cotton (Gossypium hirsutum L.) seedlings in response to four lightemitting diodes and high pressure sodium lamp, J. Cotton Res. 7 (2024) 8. https://doi.org/10.1186/s42397-024-00170-5. [CrossRef] [Google Scholar]
- G. Harsanyi, A. Poppe, J. Hegedus, G. Hantos, P. Bojta, R. Kovacs, Climatically Accelerated Material Processes Determining the Long-Term Reliability of LightEmitting Diodes, Materials 17 (2024) 1643. https://doi.org/10.3390/ma17071643. [CrossRef] [PubMed] [Google Scholar]
- S.-W. Rhee, H.-H. Choi, H.-S. Park, Characteristics of mercury emission from linear type of spent fluorescent lamp, Waste Manag. 34 (2014) 1066–1071. https://doi.org/10.1016/j.wasman.2013.07.029. [CrossRef] [Google Scholar]
- E.E. Hammer, High Frequency Reference Circuit for CFL/Linear Fluorescent Lamps, J. Illum. Eng. Soc. (1997). https://www.tandfonline.com/doi/abs/10.1080/00994480.1997.10748192 (accessed October 6, 2024). [Google Scholar]
- R. Kane, H. Sell, Revolution in Lamps: A Chronicle of 50 Years of Progress, 2nd ed., River Publishers, 2020. https://doi.org/10.1201/9781003150985. [CrossRef] [Google Scholar]
- S. Chen, J. Zhang, Environmental Impacts of Compact Fluorescent Lamps and Linear Fluorescent Lamps in China, in: Atlantis Press, 2016: pp. 1143–1150. https://doi.org/10.2991/iccte-16.2016.201. [Google Scholar]
- D.J. Pileggi, E.M. Gulachenski, C.E. Root, T.J. Gentile, A.E. Emanuel, The effect of modern compact fluorescent lights on voltage distortion, IEEE Trans. Power Deliv. 8 (1993) 1451–1459. https://doi.org/10.1109/61.252672. [CrossRef] [Google Scholar]
- Z. Wei, N.R. Watson, L.P. Frater, Modelling of compact fluorescent lamps, in: 2008 13th Int. Conf. Harmon. Qual. Power, IEEE, Wollongong, NSW, 2008: pp. 1–6. https://doi.org/10.1109/ICHQP.2008.4668833. [Google Scholar]
- S. Elphick, P. Ciufo, S. Perera, The Electrical Performance of Modern Compact Fluorescent Lamps, Aust. J. Electr. Electron. Eng. 7 (2010) 43–51. https://doi.org/10.1080/1448837X.2010.11464256. [CrossRef] [Google Scholar]
- A. Heidemann, S. Hien, E. Panofski, U. Roll, Compact fluorescent lamps, IEE Proc. Sci. Meas. Technol. 140 (1993) 429. https://doi.org/10.1049/ip-a-3.1993.0067. [CrossRef] [Google Scholar]
- J.M. Alonso, D. Gacio, A.J. Calleja, J. Ribas, E.L. Corominas, A Study on LED Retrofit Solutions for Low-Voltage Halogen Cycle Lamps, IEEE Trans. Ind. Appl. 48 (2012) 1673–1682. https://doi.org/10.1109/TIA.2012.2209852. [CrossRef] [Google Scholar]
- J.R. Coaton, Modern tungsten-halogen-lamp technology, Proc. Inst. Electr. Eng. 117 (1970) 1953–1959. https://doi.org/10.1049/piee.1970.0346. [CrossRef] [Google Scholar]
- M.A. Cayless, Lamps and Lighting, 0 ed., Routledge, 2012. https://doi.org/10.4324/9780080928739. [CrossRef] [Google Scholar]
- J.R. Coaton, J.R. Fitzpatrick, Tungsten-halogen lamps and regenerative mechanisms, IEE Proc. Phys. Sci. Meas. Instrum. Manag. Educ. Rev. 127 (1980) 142–148. https://doi.org/10.1049/ip-a-1.1980.0024. [Google Scholar]
- J.R. Coaton, The genesis of incandescent lamp manufacture, Eng. Sci. Educ. J. 11 (2002) 17–24. https://doi.org/10.1049/esej:20020103. [CrossRef] [Google Scholar]
- D.L. Evans, High-luminance LEDs replace incandescent lamps in new applications, in: Light-Emit. Diodes Res. Manuf. Appl., SPIE, 1997: pp. 142–153. https://doi.org/10.1117/12.271036. [Google Scholar]
- P.A. Jay, D.C. Coomber, The life and performance of incandescent lamps, Light. Res. Technol. 12 (1980) 88–104. https://doi.org/10.1177/096032718001200206. [CrossRef] [Google Scholar]
- C.H. Sharp, New types of incandescent lamps, Proc. Am. Inst. Electr. Eng. 25 (1906) 809–841. https://doi.org/10.1109/PAIEE.1906.6741937. [CrossRef] [Google Scholar]
- J.W. Howell, H. Schroeder, The Quality of Incandescent Lamps, Trans. Am. Inst. Electr. Eng. XLII (1923) 865–870. https://doi.org/10.1109/T-AIEE.1923.5060917. [CrossRef] [Google Scholar]
- Q. Zhang, K. Smith, X. Zhao, X. Jin, S. Wang, J. Shen, Z.J. Ren, Greenhouse gas emissions associated with urban water infrastructure: What we have learnt from China’s practice, WIREs Water 8 (2021) e1529. https://doi.org/10.1002/wat2.1529. [CrossRef] [Google Scholar]
- Y. Guan, Y. Shan, Q. Huang, H. Chen, D. Wang, K. Hubacek, Assessment to China’s Recent Emission Pattern Shifts, Earths Future 9 (2021) e2021EF002241. https://doi.org/10.1029/2021EF002241. [CrossRef] [Google Scholar]
- M. Brander, M. Gillenwater, F. Ascui, Creative accounting: A critical perspective on the market-based method for reporting purchased electricity (scope 2) emissions, Energy Policy 112 (2018) 29–33. https://doi.org/10.1016/j.enpol.2017.09.051. [CrossRef] [Google Scholar]
- J. Ouyang, P. Mativenga, Z. Liu, N. Goffin, L. Jones, E. Woolley, L. Li, Sankey diagrams for energy consumption and scope 2 carbon emissions in laser de-coating, Energy 243 (2022) 123069. https://doi.org/10.1016/j.energy.2021.123069. [CrossRef] [Google Scholar]
- B. Jiang, Y. Song, H.X. Li, S.S.-Y. Lau, Q. Lei, Incorporating biophilic criteria into green building rating tools: Case study of Green Mark and LEED, Environ. Impact Assess. Rev. 82 (2020) 106380. https://doi.org/10.1016/j.eiar.2020.106380. [CrossRef] [Google Scholar]
- M. Fontoynont, K. Ramananarivo, T. Soreze, G. Fernez, K.G. Skov, Economic feasibility of maximising daylighting of a standard office building with efficient electric lighting, Energy Build. 110 (2016) 435–442. https://doi.org/10.1016/j.enbuild.2015.09.045. [CrossRef] [Google Scholar]
- A.M. Al-Ghaili, H. Kasim, N.M. Al-Hada, M. Othman, M.A. Saleh, A Review: Buildings Energy Savings - Lighting Systems Performance, IEEE Access 8 (2020) 76108–76119. https://doi.org/10.1109/ACCESS.2020.2989237. [CrossRef] [Google Scholar]
- E.J. Gago, T. Muneer, M. Knez, H. Köster, Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load, Renew. Sustain. Energy Rev. 41 (2015) 1–13. https://doi.org/10.1016/j.rser.2014.08.002. [CrossRef] [Google Scholar]
- A. Alwisy, S. BuHamdan, M. Gül, Criteria-based ranking of green building design factors according to leading rating systems, Energy Build. 178 (2018) 347–359. https://doi.org/10.1016/j.enbuild.2018.08.043. [CrossRef] [Google Scholar]
- Q.J. Kwong, Light level, visual comfort and lighting energy savings potential in a green-certified high-rise building, J. Build. Eng. 29 (2020) 101198. https://doi.org/10.1016/j.jobe.2020.101198. [CrossRef] [Google Scholar]
- H. Shuang, J. Luo, X. Gan, S. Xiang, LEED certification system for green buildings in China: Examining spatial differences, temporal evolution, and spatial overflow, J. Clean. Prod. 458 (2024) 142479. https://doi.org/10.1016/j.jclepro.2024.142479. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.