Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00051
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202560100051
Published online 16 January 2025
  1. Segovia, J.A., Toaquiza, J.F., Llanos, J.R., Rivas, D.R.: Meteorological Variables Forecasting System Using Machine Learning and Open-Source Software. Electronics. 12, 1007 (2023). https://doi.org/10.3390/electronics12041007 [CrossRef] [Google Scholar]
  2. Allal, Z., Noura, H.N., Chahine, K.: Machine Learning Algorithms for Solar Irradiance Prediction: A Recent Comparative Study. e-Prime-Advances in Electrical Engineering, Electronics and Energy. 7, 100453 (2024). https://doi.org/10.1016/j.prime.2024.100453 [CrossRef] [Google Scholar]
  3. Aġbulut, Ü., Gürel, A.E., Biçen, Y.: Pre diction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews. 135, 110114 (2021). https://doi.org/10.1016/j.rser.2020.110114 [CrossRef] [Google Scholar]
  4. Villegas-Mier, C.G., Rodriguez-Resendiz, J., Álvarez-Alvarado, J.M., Jiménez-Hernández, H., Odry, Á.: Optimized Random Forest for Solar Radiation Prediction Using Sunshine Hours. Micromachines. 13, 1406 (2022). https://doi.org/10.3390/mi13091406 [CrossRef] [Google Scholar]
  5. Sagi, O., Rokach, L.: Explainable decision forest: Transforming a decision forest into an interpretable tree. Information Fusion. 61, 124–138 (2020). https://doi.org/10.1016/j.inffus.2020.03.013 [CrossRef] [Google Scholar]
  6. Banik, R., Biswas, A.: Improving Solar PV Prediction Performance with RF-CatBoost Ensemble: A Robust and Complementary Approach. Renewable Energy Focus. 46, 207–221 (2023). https://doi.org/10.1016/j.ref.2023.06.009 [CrossRef] [Google Scholar]
  7. Gao, Y., Miyata, S., Akashi, Y.: Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention. Applied Energy. 321, 119288 (2022). https://doi.org/10.1016Zj.apenergy.2022.119288 [CrossRef] [Google Scholar]
  8. Alam, M.S., Al-Ismail, F.S., Hossain, M.S., Rahman, S.M.: Ensemble MachineLearning Models for Accurate Prediction of Solar Irradiation in Bangladesh. Processes. 11, 908 (2023). https://doi.org/10.3390/pr11030908 [CrossRef] [Google Scholar]
  9. Shanmugasundar, G., Vanitha, M., Čep, R., Kumar, V., Kalita, K., Ramachandran, M.: A Comparative Study of Linear, Random Forest and AdaBoost Regressions for Modeling Non-Traditional Machining. Processes. 9, 2015 (2021). https://doi.org/10.3390/pr9112015 [CrossRef] [Google Scholar]
  10. Ordoñez Palacios, L.E., Bucheli Guerrero, V., Ordoñez, H.: Machine Learning for Solar Resource Assessment Using Satellite Images. Energies. 15, 3985 (2022). https://doi.org/10.3390/en15113985 [CrossRef] [Google Scholar]
  11. Ehteram, M., Shabanian, H.: Unveiling the SALSTM-M5T model and its python implementation for precise solar radiation prediction. Energy Reports. 10, 3402–3417 (2023). https://doi.org/10.1016/j.egyr.2023.10.029 [CrossRef] [Google Scholar]
  12. Jiménez J.D.L., Toapanta, J., Muñoz, P., Achig, R.S.: State-of-Health Assessment of Lithium-Ion Batteries in Two Scenarios: Microgrids and Electric Vehicles. In: 2023 IEEE Seventh Ecuador Technical Chapters Meeting (ECTM). pp. 1–6 (2023). https://doi.org/10.1109/ETCM58927.2023.10309053 [Google Scholar]
  13. Singh, N., Jena, S., Panigrahi, C.K.: A novel application of Decision Tree classifier in solar irradiance prediction. Materials Today: Proceedings. 58, 316–323 (2022). https://doi.org/10.1016/j.matpr.2022.02.198 [CrossRef] [Google Scholar]
  14. Huang, H., Zhu, Q., Zhu, X., Zhang, J.: An Adaptive, Data-Driven Stacking Ensemble Learning Framework for the Short-Term Forecasting of Renewable Energy Generation. Energies. 16, 1963 (2023). https://doi.org/10.3390/en16041963 [CrossRef] [Google Scholar]
  15. Achig, R.S., Gonzales, J.A., Hidalgo, C.A.: Flow Prediction for Hydropower Generation using LMST Neural Networks. J. Phys.: Conf. Ser. 2609, 012006 (2023). https://doi.org/10.1088/1742-6596/2609/1/012006 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.