Open Access
Issue |
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
|
|
---|---|---|
Article Number | 00052 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/e3sconf/202560100052 | |
Published online | 16 January 2025 |
- I. Takahashi and Y. Ohmori, “High-performance direct torque control of an induction motor,” IEEE Transaction on Industrial Application., vol. 25, pp. 257–264, Mar./Apr. 1989. [CrossRef] [Google Scholar]
- M. Depenbrock, “Direct Self Control of Inverter-Fed Induction Machines”, IEEE Transaction on Power Electronics, vol. PE-3, no 4, Oct 1988, pp 420–429. [CrossRef] [Google Scholar]
- Khadar, S.; Kouzou, A. Dual Direct Torque Control of Doubly Fed Induction Machine using Artificial Neural Network. In proceedings of the 2018 3rd International Conference on Pattern Analysis and Intelligent Systems (PAIS), Tebessa, Algeria, 24-25 October 2018; pp. 1–7. [Google Scholar]
- Chantoufi, A., Derouich, A., El Ouanjli, N., Mahfoud, S., El Idrissi, A., Tazay, A. F., & Mosaad, M. I. (2024). Direct Torque Control-Based Backstepping Speed Controller of Doubly Fed Induction Motors in Electric Vehicles; Experimental Validation. IEEE Access. [Google Scholar]
- Mahfoud, S.; Derouich, A.; El Ouanjli, N.; Mohammed, T.; Hanafi, A. Field Oriented Control of Doubly Fed Induction Motor using Speed Sliding Mode Controller. E3s Web Conf. Edp Sci. 2021, 229, 01061. [CrossRef] [EDP Sciences] [Google Scholar]
- Mahfoud, S., El Ouanjli, N., Derouich, A., El Idrissi, A., Hilali, A., & Chetouani, E. (2024). Higher performance enhancement of direct torque control by using artificial neural networks for doubly fed induction motor. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 8, 100537. [CrossRef] [Google Scholar]
- Menghal, P.M.; Laxmi, A.J. Real time control of induction motor using neural network. In Proceedings of the 2018 International Conference on Communication information and Computing Technology (ICCICT), Mumbai, India, 2-3 February 2018; pp. 1–6. [Google Scholar]
- Grabowski, P.Z.; Kazmierkowski, M.P.; Bose, B.K.; Blaabjerg, F. A simple directtorque neuro-fuzzy control of PWM-inverter-fed induction motor drive. IEEE Trans. Ind. Electron. 2000, 47, 863–870. [CrossRef] [Google Scholar]
- Banda, G.; Kolli, S.G. An Intelligent Adaptive Neural Network Controller for a Direct Torque Controlled eCAR Propulsion System. World Electr. Veh. J. 2021, 12, 44. [CrossRef] [Google Scholar]
- El Ouanjli, N., Mahfoud, S., Al-Sumaiti, A. S., El Daoudi, S., Derouich, A., El Mahfoud, M., & Mossa, M. A. (2023). Improved twelve sectors DTC strategy of induction motor drive using Backstepping speed controller and P-MRAS stator resistance identification-design and validation. Alexandria Engineering Journal, 80, 358–371. [CrossRef] [Google Scholar]
- Pujar, J.; Kodad, S. Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator. Int. J. Electr.Comput. Eng. 2011, 5, 1041–1050. [Google Scholar]
- Zemmit, A.; Messalti, S.; Harrag, A. A new improved DTC of doubly fed induction machine using GA-based PI controller. Ain Shams Eng. J. 2018, 9, 1877–1885. [CrossRef] [Google Scholar]
- Das, K.R.; Das, D.; Das, J. Optimal tuning of PID controller using GWO algorithm for speed control in DC motor. In Proceedings of the 2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI), Faridabad, India, 8-10 October 2015; pp. 108–112. [Google Scholar]
- Madadi, A.; Motlagh, M.M. Optimal control of DC motor using grey wolf optimizer algorithm. Tech. J. Eng. Appl. Sci. 2014, 4, 373–379. [Google Scholar]
- Kanojiya, R.G.; Meshram, P.M. Optimal tuning of PI controller for speed control of DC motor drive using particle swarm optimization. In Proceedings of the 2012 International Conference on Advances in Power Conversion and Energy Technologies(APCET), Mylavaram, India, 2-4 August 2012; pp. 1–6. [Google Scholar]
- Ayala Hv, H.; dos Santos Coelho, L. Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator. Expert Syst. Appl. 2012, 39, 8968–8974. [CrossRef] [Google Scholar]
- Krohling, R.A.; Rey, J.P. Design of optimal disturbance rejection PID controllers using genetic algorithms. IEEE Trans. On Evol.Comput. 2001, 5, 78–82. [CrossRef] [Google Scholar]
- Nagaraj, B.; Murugananth, N. A comparative study of PID controller tuning using GA, EP, PSO and ACO. In Proceedings of the 2010 International Conference on Communication Control and Computing Technologies, Nagercoil, India, 7-9 October 2010; pp. 305–313. [CrossRef] [Google Scholar]
- Elsisi, M.; Tran, M.Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M. Robust Design of ANFIS-Based Blade Pitch Controller for Wind Energy Conversion Systems Against Wind Speed Fluctuations. IEEE Access 2021, 9, 37894–37904. [CrossRef] [Google Scholar]
- Zemmit, A., Messalti, S., & Harrag, A. (2017). A new improved DTC of doubly fed induction machine using GA-based PI controller. Ain Shams Engineering Journal. [Google Scholar]
- Mahfoud, S., Derouich, A., El Ouanjli, N., Mossa, M. A., Bhaskar, M. S., Lan, N. K., & Quynh, N. V. (2022). A new robust direct torque control based on a genetic algorithm for a doubly-fed induction motor: experimental validation. Energies, 15(15), 5384. [CrossRef] [Google Scholar]
- Goldberg, D.E.: Sizing Populations for Serial and Parallel Genetic Algorithms. In: Proceeding of the Third International Conference on Genetic Algorithms, CL, USA (1989). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.