Open Access
Issue |
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
|
|
---|---|---|
Article Number | 00081 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202560100081 | |
Published online | 16 January 2025 |
- S.P. Economopoulos, N. Karousis, G. Rotas, G. Pagona, N. Tagmatarchis, Microwave-assisted functionalization of carbon nanostructured materials, Curr. Org. Chem, 15, 1121–1132 (2011). [CrossRef] [Google Scholar]
- P. Rohatgi, R. Asthana, S. Das, Solidification, structures, and properties of cast metalceramic particle composites, Int. Met. Rev, 31, 115–139 (1986). [CrossRef] [Google Scholar]
- N.G. Chopra, R. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes, Science, 269, 966–967 (1995). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes, Phys. Rev. B, 49, 5081 (1994). [CrossRef] [PubMed] [Google Scholar]
- X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron nitride nanotubes, Europhys. Lett, 28, 335 (1994). [CrossRef] [Google Scholar]
- D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets, ACS Nano, 4, 2979–2993 (2010). [CrossRef] [PubMed] [Google Scholar]
- C. Ambrosch-Draxl, J.O. Sofo, Linear optical properties of solids within the fullpotential linearized augmented planewave method, Comput. Phys. Commun, 175, 1–14 (2006). [CrossRef] [Google Scholar]
- M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B, 73, 045112 (2006). [CrossRef] [Google Scholar]
- Y. Saadu Itas, A.B. Suleiman, C.E. Ndikilar, A. Lawal, R. Razali, I.I. Idowu, M. U. Khandaker, A.M. Danmadami, P. Ahmad, T.B. Emran, et al., First-principle studies of the structural, electronic, and optical properties of double-walled carbon boron nitride nanostructures heterosystem under various interwall distances, J. Chem, 2023, 1–12 (2023). [CrossRef] [Google Scholar]
- M.M. Slepchenkov, D.S. Shmygin, G. Zhang, O.E. Glukhova, Controlling anisotropic electrical conductivity in porous graphene-nanotube thin films, Carbon, 165, 139–149 (2020). [CrossRef] [Google Scholar]
- Y. Tadi Beni, F. Mehralian, M. Karimi Zeverdejani, Free vibration of anisotropic single-walled carbon nanotube based on couple stress theory for different chirality, J. Low Freq. Noise Vib. Act. Control, 36, 277–293 (2017). [CrossRef] [Google Scholar]
- H. Wang, F. Tam, N.K. Grady, N.J. Halas, Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance, J. Phys. Chem. B, 109, 18218–18222 (2005). [CrossRef] [PubMed] [Google Scholar]
- K. Gharbavi, H. Badehian, Optical properties of armchair (7, 7) single walled carbon nanotubes, AIP Adv, 5, 077103 (2015). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.