Open Access
Issue |
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
|
|
---|---|---|
Article Number | 00080 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/e3sconf/202560100080 | |
Published online | 16 January 2025 |
- F. Jiang, X. Yuan, L. Hu, G. Xie, Z. Zhang, X. Li, H. Wang, A comprehensive review of energy storage technology development and application for pure electric vehicles. J. Energy Storage 86, 111159–111184 (2024) [CrossRef] [Google Scholar]
- K. Najeeb, A. H. Tariq, M. Hassan, M. Anwar, A. Bahadar, S. A. A. Kazmi, M. Yousif, Techno-economic and performance assessment of a hybrid fuel cell-based combined heat and power system for dairy industry. Environ. Dev. Sustain., 1–29 (2024) [Google Scholar]
- N. Twi-Yeboah, D. Osei, M. K. Danquah, Advances in solar-derived chemical fuel systems. Energies 16, 2864–2884 (2023) [CrossRef] [Google Scholar]
- B. B. P. Solis, J. C. C. Argüello, I. M. Canche, L. G. Barba, M. P. Gurrola, CFD Analysis in the Mesh Modified Gas Diffusion Layer of a Proton Exchange Membrane Fuel Cell (PEMFC). CFD Lett. 16, 55–67 (2024) [Google Scholar]
- K. Kabouchi, M. K. Ettouhami, H. Mounir, K. Elbikri, Performance Investigation of PEM Fuel Cell with Three-Pass Serpentine Flow Fields under Varying Operating Voltages. CFD Lett. 16, 54–63 (2024) [CrossRef] [Google Scholar]
- S. P. S. Badwal, S. Giddey, A. Kulkarni, J. Goel, S. Basu, Direct ethanol fuel cells for transport and stationary applications-A comprehensive review. Appl. Energy 145, 80–103 (2015) [CrossRef] [Google Scholar]
- C. W. Anson, S. S. Stahl, Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O2 and Oxidation of H2, Alcohols, Biomass, and Complex Fuels. Chem. Rev. 120, 3749–3786 (2020) [CrossRef] [PubMed] [Google Scholar]
- W. Zhou, S. Chen, X. Meng, J. Li, J. Gao, Energy-saving cathodic H2 production enabled by non-oxygen evolution anodic reactions: a critical review on fundamental principles and applications. Int. J. Hydrogen Energy. 48, 15748–15770 (2023) [CrossRef] [Google Scholar]
- Z. Qiao, B. Lin, H. Zhang, Y. Yan, L. Li, J. Tang, T. Zhou, Cathode and anode catalysis mechanism and design principle of water all splitting in chlorinated neutral environment: A review. Int. J. Hydrogen Energy. 63, 1182–1196 (2024) [CrossRef] [Google Scholar]
- P. J. Megía, A. J. Vizcaíno, J. A. Calles, A. Carrero, Hydrogen production technologies: from fossil fuels toward renewable sources. A mini review. Energy & Fuels 35, 16403–16415 (2021) [CrossRef] [Google Scholar]
- G. A. Ryabov, Chemical looping combustion and gasification of fuels. A review of studies and new process solutions. Therm. Eng. 69, 26–41 (2022) [CrossRef] [Google Scholar]
- A. Shamoon, A. Haleem, S. Bahl, M. Javaid, S. B. Garg, R. C. Sharma, J. Garg, Environmental impact of energy production and extraction of materials-a review. Mater. Today Proc. 57, 936–941 (2022) [CrossRef] [Google Scholar]
- L. Cherwoo, I. Gupta, G. Flora, R. Verma, M. Kapil, S. K. Arya, V. Ashokkumar, Biofuels an alternative to traditional fossil fuels: A comprehensive review. Sustain. Energy Technol. Assess. 60, 103503–103514 (2023) [Google Scholar]
- Y. Wang, Y. Liu, Z. Xu, K. Yin, Y. Zhou, J. Zhang, Z. Zhu, A review on renewable energy-based chemical engineering design and optimization. Renew. Sustain. Energy Rev. 189, 114015–114034 (2024) [CrossRef] [Google Scholar]
- A. Pramuanjaroenkij, S. Kakaç, The fuel cell electric vehicles: The highlight review. Int. J. Hydrogen Energy. 48, 9401–9425 (2023) [CrossRef] [Google Scholar]
- M. A. Aminudin, S. K. Kamarudin, B. H. Lim, E. H. Majilan, M. S. Masdar, N. Shaari, An overview: Current progress on hydrogen fuel cell vehicles. Int. J. Hydrogen Energy. 48, 4371–4388 (2023) [CrossRef] [Google Scholar]
- H. Chehrmonavari, A. Kakaee, S. E. Hosseini, U. Desideri, G. Tsatsaronis, G. Floerchinger, A. Paykani, Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review. Renew. Sustain. Energy Rev. 171, 112982–113003 (2023) [CrossRef] [Google Scholar]
- V. K. Visvanathan, K. Palaniswamy, D. Ponnaiyan, M. Chandran, T. Kumaresan, J. Ramasamy, S. Sundaram, Fuel cell products for sustainable transportation and stationary power generation: Review on market perspective. Energies 16, 2748–2768 (2023) [CrossRef] [Google Scholar]
- Z. Wang, Z. Liu, L. Fan, Q. Du, K. Jiao, Application progress of small-scale proton exchange membrane fuel cell. Energy Reviews 2, 100017–100028 (2023) [CrossRef] [Google Scholar]
- A. Parikh, M. Shah, M. Prajapati, Fuelling the sustainable future: a comparative analysis between battery electrical vehicles (BEV) and fuel cell electrical vehicles (FCEV). Environ. Sci. & Pollut. Res. 30, 57236–57252 (2023) [CrossRef] [Google Scholar]
- F. O. Usman, E. C. Ani, W. Ebirim, D. J. P. Montero, K. A. Olu-lawal, N. Ninduwezuor-Ehiobu, Integrating renewable energy solutions in the manufacturing industry: challenges and opportunities: a review. Engineering Science & Technology Journal 5, 674–703 (2024) [CrossRef] [Google Scholar]
- P. Simpa, N. O. Solomon, O. A. Adenekan, S. C. Obasi, Sustainable nanomaterials’ role in green supply chains and environmental sustainability. Engineering Science & Technology Journal 5, 1678–1694 (2024) [CrossRef] [Google Scholar]
- M. Aravindan, P. Kumar, Hydrogen towards sustainable transition: A review of production, economic, environmental impact and scaling factors. Results Eng., 101456–101476 (2023) [Google Scholar]
- L. Zhang, C. Jia, F. Bai, W. Wang, S. An, K. Zhao, H. Sun, A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel 355, 129455–129478 (2024) [CrossRef] [Google Scholar]
- N. A. Qasem, A recent overview of proton exchange membrane fuel Cells: Fundamentals, Applications, and advances. Appl. Therm. Eng. 252, 123746–123774 (2024) [CrossRef] [Google Scholar]
- Z. Zhang, J. Mao, Z. Liu, Advancements and insights in thermal and water management of proton exchange membrane fuel cells: Challenges and prospects. Int. Commun. Heat Mass Transf. 153, 107376–107393 (2024) [CrossRef] [Google Scholar]
- K. Li, J. Hong, C. Zhang, F. Liang, H. Yang, F. Ma, F. Wang, Health state monitoring and predicting of proton exchange membrane fuel cells: A review. J. Power Sources 612, 234828–234841 (2024) [CrossRef] [Google Scholar]
- M. Odgaard, The use of per-fluorinated sulfonic acid (PFSA) membrane as electrolyte in fuel cells. Adv. Fluoride-Mater. Energy Convers., 325–374 (2015) [CrossRef] [Google Scholar]
- R. Gloukhovski, V. Freger, Y. Tsur, Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: a beginner’s guide. Rev. Chem. Eng. 34, 455–479 (2018) [CrossRef] [Google Scholar]
- J. Gao, X. Dong, Q. Tian, Y. He, Carbon nanotubes reinforced proton exchange membranes in fuel cells: An overview. Int. J. Hydrogen Energy. 48, 3216–3231 (2023) [CrossRef] [Google Scholar]
- D. Henkensmeier, W. C. Cho, P. Jannasch, J. Stojadinovic, Q. Li, D. Aili, J. O. Jensen, Separators and Membranes for Advanced Alkaline Water Electrolysis. Chem. Rev. 124, 6393–6443 (2024) [CrossRef] [PubMed] [Google Scholar]
- S. Joseph, Applications of Multifunctional Nanomaterials, 125-142 (2023) [Google Scholar]
- M. M. Tellez-Cruz, J. Escorihuela, O. Solorza-Feria, V. Compañ, Proton exchange membrane fuel cells (PEMFCs): Advances and challenges. Polym. 13, 3064–3117 (2021) [CrossRef] [Google Scholar]
- J. Lindorfer, D. C. Rosenfeld, H. Böhm, Fuel cells: Energy conversion technology. Future energy, 495–517 (2020) [CrossRef] [Google Scholar]
- R. G. Bodkhe, R. L. Shrivastava, V. K. Soni, R. B. Chadge, A review of renewable hydrogen generation and proton exchange membrane fuel cell technology for sustainable energy development. Int. J. Electrochem. Sci. 18, 100108–100119 (2023) [CrossRef] [Google Scholar]
- E. Ogungbemi, T. Wilberforce, O. Ijaodola, J. Thompson, A. G. Olabi, Selection of proton exchange membrane fuel cell for transportation. Int. J. Hydrogen Energy. 46, 30625–30640 (2021) [CrossRef] [Google Scholar]
- K. Kabouchi, M. K. Ettouhami, H. Mounir, Simulation Examination of the Impact of Operating Parameters on a High-Temperature Proton Exchange Membrane Fuel Cell. Math. Model. Eng. Probl. 11, 1626–1632 (2024) [CrossRef] [Google Scholar]
- G. Wang, Y. Yu, H. Liu, C. Gong, S. Wen, X. Wang, Z. Tu, Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review. Fuel Process. Technol. 179, 203–228 (2018) [CrossRef] [Google Scholar]
- M. Pan, C. Pan, C. Li, J. Zhao, A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability. Renew. Sustain. Energy Rev. 141, 110771–110798 (2021) [CrossRef] [Google Scholar]
- F. Qureshi, M. Yusuf, H. Ibrahim, H. Kamyab, S. Chelliapan, C. Q. Pham, D. V. N. Vo, Contemporary avenues of the Hydrogen industry: Opportunities and challenges in the eco-friendly approach. Environ. Res. 229, 115963–115984 (2023) [CrossRef] [Google Scholar]
- L. Zhao, J. Hong, J. Xie, S. Jiang, X. Wei, P. Ming, H. Dai, Investigation of local sensitivity for vehicle-oriented fuel cell stacks based on electrochemical impedance spectroscopy. Energy 262, 125381–125397 (2023) [CrossRef] [Google Scholar]
- K. Meng, B. Chen, H. Zhou, W. Chen, Z. Tu, Experimentally investigation on current density distribution characteristics of hydrogen-oxygen proton exchange membrane fuel cells under dynamic loading. J. Clean. Prod. 393, 136315–136330 (2023) [CrossRef] [Google Scholar]
- Y. Wang, Z. Lu, Y. Li, Z. Ma, Y. Gu, Q. Guo, Performance analysis and multioptimization of direct methanol fuel cell based on a novel numerical model considering mass transfer. Int. J. Hydrogen Energy. 62, 362–374 (2024) [CrossRef] [Google Scholar]
- F. Mazzeo, L. Di Napoli, M. Carello, Assessing Open Circuit Voltage Losses in PEMFCs: A New Methodological Approach. Energies 17, 2785–2805 (2024) [CrossRef] [Google Scholar]
- K. Gunaseelan, S. Gajalakshmi, S. K. Kamaraj, J. Solomon, D. A. Jadhav, Electrochemical losses and its role in power generation of microbial fuel cells. Bioelectrochemical Systems: Vol. 1 Principles and Processes, 81–118 (2020) [CrossRef] [Google Scholar]
- L. S. Wang, S. M. Haile, From Fundamental Interfacial Reaction Kinetics to Macroscopic Current-Voltage Characteristics: Case Study of Solid Acid Fuel Cell Limitations and Possibilities. Adv. Mater. Interfaces, (2024) [Google Scholar]
- M. Ma, L. Shen, Z. Zhao, P. Guo, J. Liu, B. Xu, Z. Wang, Activation methods and underlying performance boosting mechanisms within fuel cell catalyst layer. eScience, 100254–100276 (2024) [CrossRef] [Google Scholar]
- U. Mitra, A. Arya, S. Gupta, A comprehensive and comparative review on parameter estimation methods for modelling proton exchange membrane fuel cell. Fuel 335, 127080–127116 (2023) [CrossRef] [Google Scholar]
- J. Guo, P. Brimley, M. J. Liu, E. R. Corson, C. Muñoz, W. A. Smith, W. A. Tarpeh, Mass transport modifies the interfacial electrolyte to influence electrochemical nitrate reduction. ACS Sustain Chem Eng 11, 7882–7893 (2023) [CrossRef] [Google Scholar]
- E. Eikeng, A. Makhsoos, B. G. Pollet, Critical and strategic raw materials for electrolysers, fuel cells, metal hydrides and hydrogen separation technologies. Int. J. Hydrogen Energy. 71, 433–464 (2024) [CrossRef] [Google Scholar]
- S. Zaman, L. Huang, A. I. Douka, H. Yang, B. You, B. Y. Xia, Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives. Angew. Chem. Int. Ed. 133, 17976–17996 (2021) [CrossRef] [Google Scholar]
- G. Fazio, L. Ferrighi, D. Perilli, C. Di Valentin, Computational electrochemistry of doped graphene as electrocatalytic material in fuel cells. Int. J. Quantum Chem. 116, 1623–1640 (2016) [CrossRef] [Google Scholar]
- B. Wu, X. Xu, G. Dong, M. Zhang, S. Luo, D. Y. Leung, Y. Wang, Computational modeling studies on microfluidic fuel cell: A prospective review. Renew. Sustain. Energy Rev. 191, 114082–114109 (2024) [CrossRef] [Google Scholar]
- M. Sarker, M. A. Rahman, F. Mojica, S. Mehrazi, W. J. Kort-Kamp, P. Y. A. Chuang, Experimental and computational study of the microporous layer and hydrophobic treatment in the gas diffusion layer of a proton exchange membrane fuel cell. J. Power Sources 509, 230350–230360 (2021) [CrossRef] [Google Scholar]
- T. Akiki, G. Accary, W. Charon, R. Kouta, Influence of local porosity, local permeability, and contact resistance between the gas diffusion layer and the bipolar plate, on the performances of a polymer electrolyte membrane fuel cell. CCCA12, 1–6 (2012, December) [Google Scholar]
- J. Wang, J. Yuan, B. Sundén, Modeling of inhomogeneous compression effects of porous GDL on transport phenomena and performance in PEM fuel cells. Int. J. Energy Res. 41, 985–1003 (2017) [CrossRef] [Google Scholar]
- N. Zamel, X. Li, J. Shen, Numerical estimation of the effective electrical conductivity in carbon paper diffusion media. Appl. Energy 93, 39–44 (2012) [CrossRef] [Google Scholar]
- S. Litster, G. J. J. O. P. S. McLean, PEM fuel cell electrodes. J. Power Sources 130, 61–76 (2004) [CrossRef] [Google Scholar]
- E. U. Ubong, Z. Shi, X. Wang, Three-dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell. J. Electrochem. Soc. 156, 10 (2009) [Google Scholar]
- A. M. Bates, University of Louisville (2015) [Google Scholar]
- S. Park, J. W. Lee, B. N. Popov, A review of gas diffusion layer in PEM fuel cells: Materials and designs. Int. J. Hydrogen Energy. 37, 5850–5865 (2012) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.