Open Access
Issue |
E3S Web Conf.
Volume 603, 2025
International Symposium on Green and Sustainable Technology (ISGST 2024)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 7 | |
Section | Environmental Technology | |
DOI | https://doi.org/10.1051/e3sconf/202560301005 | |
Published online | 15 January 2025 |
- Y. Zheng, L. Jiang, Directional water collection on wetted spider silk. Nature 463, 640 (2010). https://doi.org/10.1038/nature08729 [CrossRef] [PubMed] [Google Scholar]
- J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang, L. Jiang, A multi-structural and multifunctional integrated fog collection system in cactus. Nat.Commun. 3, 1247 (2012). https://doi.org/10.1038/ncomms2253 [CrossRef] [Google Scholar]
- M. Cao, J. Ju, K. Li, M. Cao, J. Ju, K. Li, S. Dou, K. Liu, L. Jiang, Facile and largescale fabrication of a cactus-inspired continuous fog collector. Adv. Funct. Mater. 24, 3235 (2014). https://doi.org/10.1002/adfm.201303661 [CrossRef] [Google Scholar]
- R. Andrew, R. Chris, Water capture by a desert beetle. Nature 414, 33 (2001). https://doi.org/10.1038/35102108 [CrossRef] [PubMed] [Google Scholar]
- R. P. Garrod, L. G. Harris, W. C. E. Schofield, J. McGettrick, L. J. Ward, D. O. H. Teare, J. P. S. Badyal, Mimicking a stenocara beetle’s back for micro-condensation using plasma chemical patterned superhydrophobic superhy-drophilic surfaces. Langmuir 3, 689 (2007). https://doi.org/10.1021/la0610856 [Google Scholar]
- D. Gurera, B. Bhushan, Optimization of bioinspired conical surfaces for water collection from fog. J. Colloid Interface Sci. 551, 26 (2019). https://doi.org/10.1016/j.jcis.2019.05.015 [CrossRef] [Google Scholar]
- D. Gurera, B. Bhushan, Multistep wettability gradient on bioinspired conical surfaces for water collection from fog. Langmuir 35, 16944 (2019). https://doi.org/10.1021/acs.langmuir.9b02997 [Google Scholar]
- D. Chen, J. Li, J. Zhao, J. Guo, S. Zhang, T. A. Sherazi, S. Li, Bioinspired super- hydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection. J. Colloid and Interface Sci. 530, 274 (2018). https://doi.org/10.1016/j.jcis.2018.06.081 [CrossRef] [Google Scholar]
- S. Montecinos, D. Carvajal, P. Cereceda, M. Concha, Collection efficiency of fog events. Atmos. Res. 209, 163 (2018). https://doi.org/10.1016/j.atmosres.2018.04.004 [CrossRef] [Google Scholar]
- Y. Jiang, S. Savarirayan, Y. Yao, K. Park, Fog collection on a super-hydrophilic wire. Appl. Phys. Lett. 114, 083701 (2019). https://doi.org/10.1063Z1.5087144 [CrossRef] [Google Scholar]
- M. Ejeian, R. Wang, Adsorption-based atmospheric water harvesting. Joule 5, 1 (2021). https://doi.org/10.1016/j.joule.2021.04.005 [Google Scholar]
- Z. Chen, S. Song, B. Ma, Y. Li, Y. Shao, J. Shi, M. Liu, H. Jin, D. Jinga, Recent progress on sorption/desorption-based atmospheric water harvesting powered by solar energy. Sol. Energy Mater. Sol. Cells 230, 111233 (2021). https://doi.org/10.1016/j.solmat.2021.111233 [CrossRef] [Google Scholar]
- M. Damark, K. Varanasi, Electrostatically driven fog collection using space charge injection. Sci. Adv. 4, eaao5323, (2018). https://doi.org/10.1126/sciadv.aao5323 [CrossRef] [Google Scholar]
- R. Ghosh, A. Baut, G. Belleri, K. Michael, H.J. Butt, T.M. Schutzius, Photocatalytically reactive surfaces for simultaneous water harvesting and treatment. Nat Sustain 6, 1663 (2023). https://doi.org/10.1038/s41893-023-01159-9 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.