Open Access
Issue
E3S Web Conf.
Volume 603, 2025
International Symposium on Green and Sustainable Technology (ISGST 2024)
Article Number 01008
Number of page(s) 7
Section Environmental Technology
DOI https://doi.org/10.1051/e3sconf/202560301008
Published online 15 January 2025
  1. J. W. Downs and B. K. Wills, Phenol toxicity, in StatPearls (StatPearls Publishing, Treasure Island (FL), 2024) [Google Scholar]
  2. W. H. Saputera, A. S. Putrie, A. A. Esmailpour, D. Sasongko, V. Suendo, and R. R. Mukti, Technology advances in phenol removals: current progress and future perspectives. Catalysts 11, 998 (2021) https://doi.org/10.3390/catal11080998 [CrossRef] [Google Scholar]
  3. E. L. Baker, P. J. Landrigan, P. E. Bertozzi, P. H. Field, B. J. Basteyns, and H. G. Skinner, Phenol poisoning due to contaminated drinking water. Arch. Environ. Health 33, 89 (1978) https://doi.org/10.1080/00039896.1978.10667314 [CrossRef] [PubMed] [Google Scholar]
  4. E. E. P. Ramírez, M. L. de la Asunción, V. S. Rivalcoba, A. L. M. Hernández, and C. V. Santos, Removal of phenolic compounds from water by adsorption and photocatalysis, in Phenolic Compd., edited by M. Soto-Hernandez, M. Palma-Tenango, and M. R. del Garcia-Mateos (IntechOpen, Rijeka, 2017) https://doi.org/10.5772/66895 [Google Scholar]
  5. X. Yang, B. Wang, H. Luo, S. Yan, J. Dai, and Z. Bai, Efficient recovery of phenol from coal tar processing wastewater with tributylphosphane/diethyl carbonate/cyclohexane: Extraction cycle and mechanism study. Chem. Eng. Res. Des. 157, 104 (2020) https://doi.org/10.1016Zj.cherd.2020.03.005 [CrossRef] [Google Scholar]
  6. I. Wazeer, H. F. Hizaddin, M. A. Hashim, and M. K. Hadj-Kali, An overview about the extraction of heavy metals and other critical pollutants from contaminated water via hydrophobic deep eutectic solvents. J. Environ. Chem. Eng. 10, 108574 (2022) https://doi.Org/10.1016/j.jece.2022.108574 [CrossRef] [Google Scholar]
  7. I. Adeyemi, R. Sulaiman, M. Almazroui, A. Al-Hammadi, and I. M. AlNashef, Removal of chlorophenols from aqueous media with hydrophobic deep eutectic solvents: Experimental study and COSMO RS evaluation. J. Mol. Liq. 311, 113180 (2020) https://doi.org/10.1016/j.molliq.2020.113180 [CrossRef] [Google Scholar]
  8. C. Florindo, N. V. Monteiro, B. D. Ribeiro, L. C. Branco, and I. M. Marrucho, Hydrophobic deep eutectic solvents for purification of water contaminated with bisphenol-A. J. Mol. Liq. 297, 111841 (2020) https://doi.org/10.1016/j.molliq.2019.111841 [CrossRef] [Google Scholar]
  9. O. G. Sas, Á. Domínguez, and B. González, Recovery and elimination of phenolic pollutants from water using [NTf2] and [Nf2]-based ionic liquids. Appl. Sci. 9, 4321 (2019) https://doi.org/10.3390/app9204321 [CrossRef] [Google Scholar]
  10. I. Wazeer, H. F. Hizaddin, N. X. Wen, L. El Blidi, M. A. Hashim, and M. K. Hadj-Kali, Extraction of phenol as pollutant from aqueous effluents using hydrophobic deep eutectic solvents. Water 15, 4289 (2023) https://doi.org/10.3390/w15244289 [CrossRef] [Google Scholar]
  11. Y. Fan, H. Luo, C. Zhu, W. Li, D. Wu, and H. Wu, Hydrophobic natural alcohols based deep eutectic solvents: Effective solvents for the extraction of quinine. Sep. Purif. Technol. 275, 119112 (2021) https://doi.org/10.1016Zj.seppur.2021.119112 [CrossRef] [Google Scholar]
  12. J. K. U. Ling and K. Hadinoto, Deep eutectic solvent as green solvent in extraction of biological macromolecules: a review. Int. J. Mol. Sci. 23, 3381 (2022) https://doi.org/10.3390/ijms23063381 [CrossRef] [Google Scholar]
  13. D. J. G. P. van Osch, C. H. J. T. Dietz, J. van Spronsen, M. C. Kroon, F. Gallucci, M. van Sint Annaland, and R. Tuinier, A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustain. Chem. Eng. 7, 2933 (2019) https://doi.org/10.1021/acssuschemeng.8b03520 [CrossRef] [Google Scholar]
  14. J. Saien and S. A. Ojaghi, Effect of aqueous phase pH on liquid-liquid extraction with impinging-jets contacting technique. J. Ind. Eng. Chem. 16, 1001 (2010) https://doi.org/10.1016/j.jiec.2010.05.003 [CrossRef] [Google Scholar]
  15. M. D. Liptak, K. C. Gross, P. G. Seybold, S. Feldgus, and G. C. Shields, Absolute pKa determinations for substituted phenols. J. Am. Chem. Soc. 124, 6421 (2002) https://doi.org/10.1021/ja012474j [CrossRef] [PubMed] [Google Scholar]
  16. E. J. González, I. Díaz, M. Gonzalez-Miquel, M. Rodríguez, and A. Sueiras, On the behavior of imidazolium versus pyrrolidinium ionic liquids as extractants of phenolic compounds from water: Experimental and computational analysis. Sep. Purif. Technol. 201, 214 (2018) https://doi.org/10.1016/j.seppur.2018.03.006 [CrossRef] [Google Scholar]
  17. R. Sulaiman, I. Adeyemi, S. R. Abraham, S. W. Hasan, and I. M. AlNashef, Liquidliquid extraction of chlorophenols from wastewater using hydrophobic ionic liquids. J. Mol. Liq. 294, 111680 (2019) https://doi.org/10.1016/j.molliq.2019.111680 [CrossRef] [Google Scholar]
  18. H. Cheng, Y. Huang, H. Lv, L. Li, Q. Meng, M. Yuan, Y. Liang, and M. Jin, Insights into the liquid extraction mechanism of actual high-strength phenolic wastewater by hydrophobic deep eutectic solvents. J. Mol. Liq. 368, 120609 (2022) https://doi.org/10.1016Zj.molliq.2022.120609 [CrossRef] [Google Scholar]
  19. O. G. Sas, I. Domínguez, B. González, and Á. Domínguez, Liquid-liquid extraction of phenolic compounds from water using ionic liquids: Literature review and new experimental data using [C2mim] FSI. J. Environ. Manage. 228, 475 (2018) https://doi.org/10.1016/j.jenvman.2018.09.042 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.