Open Access
Issue
E3S Web Conf.
Volume 603, 2025
International Symposium on Green and Sustainable Technology (ISGST 2024)
Article Number 01012
Number of page(s) 7
Section Environmental Technology
DOI https://doi.org/10.1051/e3sconf/202560301012
Published online 15 January 2025
  1. M. C. Sorrentino and S. Giordano, Phytomonitoring and Phytoremediation of Environmental Pollutants, Plants 13, 366 (2024). [CrossRef] [PubMed] [Google Scholar]
  2. A. Yan, Y. Wang, S. N. Tan, M. L. Mohd Yusof, S. Ghosh, and Z. Chen, Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Pollued Land, Front. Plant Sci. 11, 1 (2020). [Google Scholar]
  3. G. Y. Baek, M. Saeed, and H. K. Choi, Duckweeds: Their Utilization, Metabolites and Cultivation, Appl. Biol. Chem. 64, 73 (2021). [CrossRef] [PubMed] [Google Scholar]
  4. Y. Zhou, A. Stepanenko, O. Kishchenko, J. Xu, and N. Borisjuk, Duckweeds for Phytoremediation of Polluted Water, Plants 12, 589 (2023). [CrossRef] [PubMed] [Google Scholar]
  5. W. Polińska, U. Kotowska, J. Karpińska, and A. Piotrowska-Niczyporuk, Removal of Benzotriazole Micropollutants Using Spirodela Polyrhiza (L.) Schleid. and Azolla Caroliniana Willd, Environ. Pollut. 332, 121982 (2023). [CrossRef] [Google Scholar]
  6. N. Politaeva and V. Badenko, Magnetic and Electric Field Accelerate Phytoextraction of Copper Lemna Minor Duckweed, PLoS One 16, e0255512 (2021). [CrossRef] [PubMed] [Google Scholar]
  7. M. Farid et al., Phytoremediation of Contaminated Industrial Wastewater by Duckweed (Lemna Minor L.): Growth and Physiological Response under Acetic Acid Application, Chemosphere 304, 135262 (2022). [CrossRef] [PubMed] [Google Scholar]
  8. H. Teiri, Y. Hajizadeh, M. R. Samaei, H. Pourzamani, and F. Mohammadi, Modelling the Phytoremediation of Formaldehyde from Indoor Air by Chamaedorea Elegans Using Artificial Intelligence, Genetic Algorithm and Response Surface Methodology, J. Environ. Chem. Eng. 8, 103985 (2020). [Google Scholar]
  9. F. Mohammadi, M. R. Samaei, A. Azhdarpoor, H. Teiri, A. Badeenezhad, and S. Rostami, Modelling and Optimizing Pyrene Removal from the Soil by Phytoremediation Using Response Surface Methodology, Artificial Neural Networks, and Genetic Algorithm, Chemosphere 237, 124486 (2019). [Google Scholar]
  10. Y. G. Wibowo, M. T. Syahnur, P. S. Al-Azizah, D. Arantha Gintha, B. R. G. Lululangi, and Sudibyo, Phytoremediation of High Concentration of Ionic Dyes Using Aquatic Plant (Lemna Minor): A Potential Eco-Friendly Solution for Wastewater Treatment, Environ. Nanotechnology, Monit. Manag. 20, 100849 (2023). [CrossRef] [Google Scholar]
  11. Z. Wei, H. Gu, Q. Van Le, W. Peng, and S. Shiung, Perspectives on Phytoremediation of Zinc Pollution in Air, Water and Soil, Sustain. Chem. Pharm. 24, 100550 (2021). [Google Scholar]
  12. M. Bog, K. J. Appenroth, and K. S. Sree, Key to the Determination of Taxa of Lemnaceae: An Update, Nord. J. Bot. 38, 1 (2020). [Google Scholar]
  13. P. Prakash and S. Chandran. S Nano-Phytoremediation of Heavy Metals from Soil: A Critical Review, Pollutants 3, 360 (2023). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.