Open Access
Issue
E3S Web Conf.
Volume 603, 2025
International Symposium on Green and Sustainable Technology (ISGST 2024)
Article Number 01019
Number of page(s) 7
Section Environmental Technology
DOI https://doi.org/10.1051/e3sconf/202560301019
Published online 15 January 2025
  1. S. Miralles-Cuevas, I. Oller, A. Agüera, M. Llorca, J.A. Sánchez Pérez, S. Malato, Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: acute and chronic toxicity assessment. J. Hazard. Mater. 323, 442–451 (2017). [CrossRef] [Google Scholar]
  2. X. Zhang, C. Chen, P. Lin, A. Hou, Z. Niu, J. Wang, Emergency drinking water treatment during source water pollution accidents in China: origin analysis, framework and technologies. Environ. Sci. Technol. 45, 161 (2011). [CrossRef] [PubMed] [Google Scholar]
  3. R.P. Schwarzenbach, T. Egli, T.B. Hofstetter, U.V. Gunten, B. Wehrli, Global water pollution and human health. Annu. Rev. Env Resour. 35, 109–136 (2010). [CrossRef] [Google Scholar]
  4. L. Jun, W. Wu, Q.Y. Tian, Z.G. Dai, Z.H. Wu, X.H. Xiao, and C.Z. Jiang, Anchoring of Ag6Si2O7 nanoparticles on a-Fe2O3 short nanotubes as a Z-scheme photocatalyst for improving their photocatalytic performances. Dalton Trans. no. 32, 1274512755 (2016). [Google Scholar]
  5. G. Darabdhara, P.K. Boruah, P. Borthakur, N. Hussain, M.R. Das, T. Ahamad, S.M. Alshehri, V. Malgras, K.C. Wu, Y. Yamauchi, Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale 8, 8276–8287 (2016). [CrossRef] [PubMed] [Google Scholar]
  6. H. Cheng, B. Huang, Y. Dai, Engineering BiOX (X= Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 4, 2009–2026 (2014). [CrossRef] [PubMed] [Google Scholar]
  7. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326 (2013). [CrossRef] [PubMed] [Google Scholar]
  8. X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu, C. Li, Rapid degradation of methylene blue in a novel heterogeneous Fe3O4@ rGO@ TiO2-catalyzed photo-Fenton system. Scientific reports 5, 10632 (2015). [CrossRef] [PubMed] [Google Scholar]
  9. H. Zhang, L.H. Guo, D. Wang, L. Zhao, B. Wan, Light-induced efficient molecular oxygen activation on a Cu (II)-grafted TiO2/graphene photocatalyst for phenol degradation. ACS Appl. Mater. Interfaces. 7, 1816 (2015). [CrossRef] [PubMed] [Google Scholar]
  10. X. Luo, F. Deng, L. Min, S. Luo, B. Guo, G. Zeng, C. Au, Facile one-step synthesis of inorganic-framework molecularly imprinted TiO2/WO3 nanocomposite and its molecular recognitive photocatalytic degradation of target contaminant. Environ. Sci. Technol. 47, 7404–7412 (2013). [CrossRef] [PubMed] [Google Scholar]
  11. M. Niu, D. Cheng, D. Cao, SiH/TiO2 and GeH/TiO2 heterojunctions: Promising TiO2- based photocatalysts under visible light. Sci Rep 4, 4810 (2014). [CrossRef] [PubMed] [Google Scholar]
  12. T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nature Communications 4, 2885 (2013). [CrossRef] [PubMed] [Google Scholar]
  13. Y. C. Zhang, L. Yao, G. S. Zhang, D. Dionysiou, J. Li, X.H. Du, One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr (VI). Appl Catal B: Environ. 144, 730–738 (2014). [CrossRef] [Google Scholar]
  14. Y. C. Zhang, Q. Zhang, Q. W. Shi, Z. Y. Cai, Z. J. Yang. Acid-treated g-C3N4 with improved photocatalytic performance in the reduction of aqueous Cr (VI) under visible-light. Separation and Purification Technology 142, 251–257 (2015). [CrossRef] [Google Scholar]
  15. Y. C. Zhang, M. Yang, G. S. Zhang, Dionysios D.. HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr (VI) in water. Appl Catal B: Environ. 142, 249258 (2013). [Google Scholar]
  16. L. Wang, X. Li, W. Teng, Q. Zhao, Y. Shi, R. Yue, Y. Chen, Efficient photocatalytic reduction of aqueous Cr (VI) over flower-like SnIn4S8 microspheres under visible light illumination. J. Hazard. Mater. 244, 681–688 (2013). [CrossRef] [Google Scholar]
  17. S.K. Batabyal, S.E. Lu, J.J. Vittal, Synthesis, characterization, and photocatalytic properties of In2S3, ZnIn2S4, and CdIn2S4 nanocrystals. Crystal Growth & Design 16 (2016). [Google Scholar]
  18. S. Jeong, H.C. Yoon, N.S. Han, H.O. Ji, S.M. Park, B.K. Min, Y.R. Do, J.K. Song, Band-gap states of AgIn5S8 and ZnS-AgIn5S8 nanoparticles. J. Phys. Chem. C 121, 3149–3155 (2017). [CrossRef] [Google Scholar]
  19. S. Shen, L. Li, Z. Wu, M. Sun, Z. Tang, J. Yang, In4SnS8 ultrathin nanosheets: a ternary sulfide with fast adsorption-visible-light photocatalysis dual function. RSC Adv. 7, 4555 (2017). [CrossRef] [Google Scholar]
  20. T. Yan, L. Li, G. Li, Y. Wang, W. Hu, X. Guan, Porous SnIn4S8 microspheres in a new polymorph that promotes dyes degradation under visible light irradiation. J. Hazard. Mater. 186, 272–279 (2011). [CrossRef] [Google Scholar]
  21. F. Deng, F. Zhong, P. Hu, X. Pei, X. Luo, S. Luo, Fabrication of In-rich AgInS2 nanoplates and nanotubes by a facile low-temperature co-precipitation strategy and their excellent visible-light photocatalytic mineralization performance. Journal of Nanoparticle Research. 19, 14 (2017). [CrossRef] [Google Scholar]
  22. B. Mao, C.H. Chuang, J. Wang, C. Burda, Synthesis and photophysical properties of ternary I-III-VI AgInS2 nanocrystals: intrinsic versus surface states. J. phys. chem.c 115, 8945–8954 (2011). [CrossRef] [Google Scholar]
  23. T. Yan, L. Li, G. Li, Solvothermal synthesis of hierarchical SnIn4S8 microspheres and their application in photocatalysis. Res Chem Intermed. 37, 297–307 (2011). [CrossRef] [Google Scholar]
  24. Y. Hamanaka, T. Ogawa, M. Tsuzuki, T. Kuzuya, Photoluminescence properties and its origin of AgInS2 quantum dots with chalcopyrite structure. Journal of Physical Chemistry C. 115, 1786–1792 (2011). [CrossRef] [Google Scholar]
  25. Z. Wang, J. Zhang, J. Lv, K. Dai, C. Liang, Plasmonic Ag2MoO4/AgBr/Ag composite: excellent photocatalytic performance and possible photocatalytic mechanism. Appl. Surf. Sci. 396, 791–798 (2017) [CrossRef] [Google Scholar]
  26. S. Shenawikhalil, V. Uvarov, S. Fronton, I. Popov, Y. Sasson, A novel heterojunction BiOBr/bismuth oxyhydrate photocatalyst with highly enhanced visible light photocatalytic properties. J. Phys. Chem. C. 116, 11004–11012 (2012). [CrossRef] [Google Scholar]
  27. Y. Yu, Y. Tang, J. Yuan, Q. Wu, W. Zheng, Y. Cao, Fabrication of N-TiO2/InBO3 heterostructures with enhanced visible photocatalytic performance. J. Phys. Chem. C. 118, 13545–13551 (2014). [CrossRef] [Google Scholar]
  28. K. Li, B. Chai, T. Peng, J. Mao, L. Zan, Preparation of AgIn5S8/TiO2 Heterojunction Nanocomposite and Its Enhanced Photocatalytic H2 Production Property under Visible Light ACS Catalysis. 3, 170–177 (2013). [Google Scholar]
  29. T. Wang, Y. Zhang, T. Ding, One-step solvothermal synthesis of SnIn4S8/TiO2 nanocomposite with enhanced visible-light-activated photocatalytic activity. Materials Letters. 123, 153–155 (2014). [CrossRef] [Google Scholar]
  30. B. Liu, X. Li, Q. Zhao, J. Ke, M. Tadé, S. Liu, Preparation of AgInS2/TiO2 composites for enhanced photocatalytic degradation of gaseous o-dichlorobenzene under visible light. Appl Catal B: Environ. 185, 1–10 (2016). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.