Open Access
Issue
E3S Web Conf.
Volume 603, 2025
International Symposium on Green and Sustainable Technology (ISGST 2024)
Article Number 01030
Number of page(s) 7
Section Environmental Technology
DOI https://doi.org/10.1051/e3sconf/202560301030
Published online 15 January 2025
  1. S. P. Tan, L. C. Ng, N. Lyndon, Z. Aman, P. Kannan, K. Hashim, A review on post- COVID-19 impacts and opportunities of agri-food supply chain in Malaysia. Peer J. 11, e15228 (2023). https://doi.org/10.7717/peerj.15228 [CrossRef] [Google Scholar]
  2. A. Barros-Rodríguez, P. Rangseekaew, K. Lasudee, W.A.-O. Pathom-Aree, and M.A.-O. Manzanera, Impacts of Agriculture on the Environment and Soil Microbial Biodiversity. Plants. 10, 2325 (2021). https://doi.org/10.3390/plants10112325 [CrossRef] [Google Scholar]
  3. S. S. Ali, M. Kornaros, A. Manni, R. Al-Tohamy, A. E.-R. R. El-Shanshoury, I. M. Matter, Chapter 28 - Advances in microorganisms-based biofertilizers: Major mechanisms and applications. Biofertilizer. 1, 371–385 (2021). https://doi.org/10.1016/j.biortech.2021.124870 [CrossRef] [Google Scholar]
  4. N. Fazelian and M. Yousefzadi, Chapter 8 - Nano-biofertilizers for enhanced nutrient use efficiency, in Nano-enabled Agrochemicals in Agriculture. AP. 145–158 (2022). [CrossRef] [Google Scholar]
  5. S. Nosheen, I. Ajmal, and Y. Song, Microbes as Biofertilizers, a Potential Approach for Sustainable Crop Production. Sustainability. 13, 1868 (2021). https://doi.org/10.3390/su13041868 [CrossRef] [Google Scholar]
  6. N. Rasdi, A. Ramlee, E. Wahid, and M. Jusoh, Microalgae and the factors involved in successful propagation for mass production. J. Environ. Sustain. 16, 21–42 (2021). [Google Scholar]
  7. E. Daneshvar, Y. Sik Ok, S. Tavakoli, B. Sarkar, S. M. Shaheen, H. Hong, Insights into upstream processing of microalgae: A review. Bioresour. Technol. 329, 124870 (2021). https://doi.org/10.1016/j.biortech.2021.124870. [CrossRef] [Google Scholar]
  8. X. Ma, Y. Mi, C. Zhao, and Q. Wei, A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. Sci. Total Environ. 1, 804 (2022). https://doi.org/10.1016/j.scitotenv.2021.151387 [Google Scholar]
  9. S. Fal, A. Aasfar, R. Rabie, A. Smouni, and H. E. L. Arroussi, Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamydomonas reinhardtii. Heliyon. 8, e08811 (2022). [CrossRef] [Google Scholar]
  10. N. Haris, H. Manan, M. Jusoh, H. Khatoon, T. Katayama, and N. A. Kasan, Effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species. Aquacult. Rep. 22, 100925 (2022). https://doi.Org/10.1016/j.aqrep.2021.100925 [Google Scholar]
  11. P. Shetty, M. M. Gitau, and G. A.-O. Maróti, Salinity Stress Responses and Adaptation Mechanisms in Eukaryotic Green Microalgae. Cells. 8, 1657 (2019). [CrossRef] [Google Scholar]
  12. M. E. H. Osman, A. M. Abo-Shady, S. F. Gheda, S. M. Desoki, and M. E. Elshobary, Unlocking the potential of microalgae cultivated on wastewater combined with salinity stress to improve biodiesel production. Environ Sci Pollut Res. 30, 114610–114624 (2023). https://doi.org/10.1007/s11356-023-30370-6 [CrossRef] [Google Scholar]
  13. A. Josephine, T. S. Kumar, B. Surendran, S. Rajakumar, R. Kirubagaran, and G. Dharani, Evaluating the effect of various environmental factors on the growth of the marine microalgae, Chlorella vulgaris. Front. mar. sci. 9, 954622 (2022). https://doi.org/10.3389/fmars.2022.954622 [CrossRef] [Google Scholar]
  14. K. Kumaran, M. Lam, X. Tan, Y. Uemura, J.-W. Lim, C. G. Khoo, Cultivation of Chlorella vulgaris Using Plant-based and Animal Waste-based Compost: A Comparison Study. Procedia Eng. 148, 679–686 (2016). https://doi.org/10.1016/j.proeng.2016.06.551 [CrossRef] [Google Scholar]
  15. U. Suparmaniam, M. K. Lam, J. W. Lim, H. Rawindran, Y. C. Ho, I. S. Tan, Enhancing high-density microalgae cultivation via exogenous supplementation of biostimulant derived from onion peel waste for sustainable biodiesel production. J. Environ. Manag. 359, 120988 (2024). https://doi.org/10.1016/j.jenvman.2024.120988 [CrossRef] [Google Scholar]
  16. U. Suparmaniam, M. K. Lam, Y. Uemura, S. H. Shuit, J. W. Lim, P. L. Show, Flocculation of Chlorella vulgaris by shell waste-derived bioflocculants for biodiesel production: Process optimization, characterization and kinetic studies. Sci. Total Environ. 702, 134995 (2020). https://doi.org/10.1016/j.scitotenv.2019.134995 [CrossRef] [Google Scholar]
  17. M. K. Lam and K. T. Lee, Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. Int. J. Greenhouse Gas Control. 14, 169–176 (2013). https://doi.org/10.1016/j.ijggc.2013.01.016 [CrossRef] [Google Scholar]
  18. J. Li, C. Li, C. Q. Lan, and D. Liao, Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of Chlorella vulgaris. MCF. 17, 111 (2018). [Google Scholar]
  19. R. A.-O. Singh, P. Yadav, A. A.-O. Kumar, A. Hashem, G. A.-O. X. Avila-Quezada, E. A.-O. Abd Allah, Salinity-Induced Physiochemical Alterations to Enhance Lipid Content in Oleaginous Microalgae Scenedesmus sp BHU1 via Two-Stage Cultivation for Biodiesel Feedstock. Microorganisms. 11, 2064 (2023). https://doi.org/10.3390/microorganisms11082064 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.