Open Access
Issue
E3S Web Conf.
Volume 603, 2025
International Symposium on Green and Sustainable Technology (ISGST 2024)
Article Number 01033
Number of page(s) 7
Section Environmental Technology
DOI https://doi.org/10.1051/e3sconf/202560301033
Published online 15 January 2025
  1. A. Fernandes, M. Pacheco, L. Ciríaco and A. Lopes, Review on the electrochemical processes for the treatment of sanitary landfill leachates: present and future. Appl. Catal. B: Env, 176, 183–200 (2015). https://doi.Org/10.1016/j.apcatb.2015.03.052 [CrossRef] [Google Scholar]
  2. V. Torretta, N. Ferronato, I. Katsoyiannis, A. Tolkou and M. Airoldi, Novel and conventional technologies for landfill leachates treatment: A review. Sustainability, 9, 9 (2016). https://doi.org/10.3390/su9010009 [CrossRef] [Google Scholar]
  3. H. Omar and S. Rohani, Treatment of landfill waste, leachate and landfill gas: A review. Front. Chem. Sci. Eng, 9, 15–32 (2015). https://doi.org/10.1007/s11705-015-1501-y [CrossRef] [Google Scholar]
  4. J. Kim, C. Yeom and Y. Kim, Electrochemical degradation of organic dyes with a porous gold electrode. Korean J Chem Eng, 33, 1855–1859 (2016). https://doi.org/10.1007/s11814-016-0033-6 [CrossRef] [Google Scholar]
  5. X. Quan, Z. Cheng, B. Chen and X. Zhu, Electrochemical oxidation of recalcitrant organic compounds in biologically treated municipal solid waste leachate in a flow reactor. J Env Sci, 25, 2023–2030 (2013). https://doi.org/10.1016/S1001-0742(12)60253-8 [CrossRef] [Google Scholar]
  6. M. Pirsaheb, E. Azizi, A. Almasi, M. Soltanian, T. Khosravi, M. Ghayebzadeh and K. Sharafi, Evaluating the efficiency of electrochemical process in removing COD and NH4-N from landfill leachate. Desalin Water Treat, 1–8 (2015). https://doi.org/10.1080/19443994.2015.1012560 [Google Scholar]
  7. D. Yu, J. Cui, X. Li, H. Zhang and Y. Pei, Electrochemical treatment of organic pollutants in landfill leachate using a three-dimensional electrode system. Chem, 125438 (2020). https://doi.org/10.1016/j.chemosphere.2019.125438 [Google Scholar]
  8. M. Okur, A. Akyol, T. Nayir, S. Kara, D. Ozturk and A. Civas, Performance of Ti/RuO2-IrO2 electrodes and comparison with BDD electrodes in the treatment of textile wastewater by electro-oxidation process. Chem. Eng. Res. Des., 183, 398–410 (2022). https://doi.org/10.1016/j.cherd.2022.05.016 [CrossRef] [Google Scholar]
  9. X. Song, X. Chen, S. Zhang and D. Wu, Treatment of high chlorine-containing composting leachate biochemical effluent by Ti/RuO2-IrO2 anodic electrochemical oxidation: Optimization and evolution of pollutants. J Env Chem Eng, 11, 109674 (2023). https://doi.org/10.1016/j.jece.2023.109674 [CrossRef] [Google Scholar]
  10. H. Aziz, A. Noor, Y. Keat, M. Alazaiza and A. Hamid, Heat activated zeolite for the reduction of ammoniacal nitrogen, colour, and COD in landfill leachate. Int. J. Environ. Res, 14, 463–478 (2020). https://doi.org/10.1007/s41742-020-00270-5 [CrossRef] [Google Scholar]
  11. M. Sohrabi, S. Amiri and H. A. M. M. Masoumi, Optimization of Direct Yellow 12 dye removal by nanoscale zero-valent iron using response surface methodology. J. Ind. Eng. Chem., 20, 2535–2542 (2014). https://doi.org/10.1016/j.jiec.2013.10.037 [CrossRef] [Google Scholar]
  12. M. Nayak and A. Vyas, Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology. J. Renew. Energy, 18–28 (2019). https://doi.Org/10.1016/j.renene.2019.01.054 [CrossRef] [Google Scholar]
  13. O. Tepe and A. Dursun, Exo-pectinase production by Bacillus pumilus using different agricultural wastes and optimizing of medium components using response surface methodology. Environ Sci Pollut Res, 21, 9911–9920 (2014). https://doi.org/10.1007/s11356-014-2833-8 [CrossRef] [PubMed] [Google Scholar]
  14. S. Guvenc, Optimization of COD removal from leachate nanofiltration concentrate using H2O2/Fe+ 2/heat-activated persulfate oxidation processes. Process Saf Environ, 126, 7–17 (2019). https://doi.org/10.1016/j.psep.2019.03.034 [CrossRef] [Google Scholar]
  15. F. Zhang, Z. Sun and J. Cui, Research on the mechanism and reaction conditions of electrochemical preparation of persulfate in a split-cell reactor using BDD anode. RSC Adv., 10, 33928–33936 (2020). https://doi.org/10.1039/D0RA04669H [CrossRef] [Google Scholar]
  16. N. Yu, X. Lu, F. Song, Y. Yao and E. Han, Electrocatalytic degradation of sulfamethazine on IrO2-RuO2 composite electrodes: influencing factors, kinetics and modelling. J. Environ. Chem. Eng., 9, 105301 (2021). https://doi.org/10.1016Z1.1ece.2021.105301 [CrossRef] [Google Scholar]
  17. B. Jiang, J. Wang, L. Chen, Y. Sun, X. Wang and J. Ruan, Experimental study on the treatment of landfill leachate by electro-assisted ZVI/UV synergistic activated persulfate system. Catalysts, 12, 768 (2022). https://doi.org/10.3390/catal12070768 [CrossRef] [Google Scholar]
  18. S. Wang and N. Zhou, “Removal of carbamazepine from aqueous solution using sonoactivated persulfate process,” Ultrason., 29, 156–162, (2016). https://doi.org/10.1016/j.ultsonch.2015.09.008 [Google Scholar]
  19. D. Zhi, Y. Lin, L. Jiang, Y. Zhou, A. Huang, J. Yang and L. Luo, Remediation of persistent organic pollutants in aqueous systems by electrochemical activation of persulfates: A review. J Env Mgt, 260, 110125 (2020). https://doi.org/10.1016/jjenvman.2020.110125 [CrossRef] [Google Scholar]
  20. B. Abdulhadi, P. Kot, K. Hashim, A. Shaw and R. Khaddar, Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. In IOP Conference Series: Materials Sc. & Eng, 584, 012035 (2019). https://iopscience.iop.org/article/10.1088/1757-899X/584/1/012035 [CrossRef] [Google Scholar]
  21. Z. Guo, Y. Zhang, H. Jia, J. Guo, X. Meng and J. Wang, Electrochemical methods for landfill leachate treatment: A review on electrocoagulation and electrooxidation. Sci Env, 806, 150529 (2022). https://doi.org/10.1016/j.scitotenv.2021.150529 [Google Scholar]
  22. O. Can, M. Tutun and R. Keyikoglu, Anodic oxidation of bisphenol A by different dimensionally stable electrodes. Water Sci Technol, 83, 1907–1919 (2021). https://doi.org/10.2166/wst.2021.092 [CrossRef] [PubMed] [Google Scholar]
  23. H. Song, L. Yan, J. Jiang, J. Ma, Z. Zhang, J. Zhang, P. Liu and T. Yang, Electrochemical activation of persulfates at BDD anode: Radical or nonradical oxidation. Water Res., 128, 393–401 (2018). https://doi.org/10.1016/j.watres.2017.10.018 [CrossRef] [Google Scholar]
  24. X. Duan, H. Sun, J. Kang, Y. Wang, S. Indrawirawan and S. Wang, Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. ACS Catal., 5, 4629–4636 (2015). https://doi.org/10.1021/acscatal.5b00774 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.