Open Access
Issue |
E3S Web Conf.
Volume 603, 2025
International Symposium on Green and Sustainable Technology (ISGST 2024)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 7 | |
Section | Green Materials | |
DOI | https://doi.org/10.1051/e3sconf/202560302002 | |
Published online | 15 January 2025 |
- A.F. Al-Mahmodi, L.O. Afolabi, M.G. Awadh, M.F.M. Batcha, N. Zamani, N.M. Isa, and D.H. Didane, Thermal behaviour of nanocomposite phase change material for solar thermal applications. J. Adv. Res. Fluid Mech. Therm. Sci. 88, 133–146 (2021). https://doi.Org/10.37934/arfmts.88.2.133146 [CrossRef] [Google Scholar]
- Z. Li, Y. Lu, R. Huang, J. Chang, X. Yu, R. Jiang, X. Yu, and A.P. Roskilly, Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage. Appl. Energy. 283, 116277 (2021). https://doi.Org/10.1016/j.apenergy.2020.116277 [CrossRef] [Google Scholar]
- Y. Munusamy, J.W. Lin Onn, M. Alquraish, M. Kchaou, and S. Sethupathi, Thermal performance of finned heat sinks embedded with form-stable myristic acid phase change material in photovoltaic cooling for green energy storage. Energies. 14, 6860 (2021). https://doi.org/10.3390/en14216860 [CrossRef] [Google Scholar]
- L.O. Afolabi, A.M. Elfaghi, D.H. Didane, M.G. Awadh, and A.-M. Akram, Experimental investigation on evacuated tube solar collector using biofluid as heat transfer fluid. J. Adv. Res. Fluid Mech. Therm. Sci. 87, 40–50 (2021). https://doi.org/10.37934/arfmts.87.3.4050 [CrossRef] [Google Scholar]
- G.K. Marri, R. Srikanth, and C. Balaji, Effect of phase change and ambient temperatures on the thermal performance of a solid-liquid phase change material based heat sinks. J. Energy Storage. 30, 101327 (2020). https://doi.org/10.1016/j.est.2020.101327 [CrossRef] [Google Scholar]
- M.R. Atta, M.S. Shaharun, M.M.R. Khan, A.F. Al-Mahmodi, A.A. Almashwali, and I. Bangash, Zif-67 hybridization and boron doping to enhance the photo-electrocatalytic properties of g-c3n4. Int. J. Hydrogen Energy. 53, 925–934 (2024). https://doi.org/10.1016/j.ijhydene.2023.11.316 [CrossRef] [Google Scholar]
- W. Gul, S.R. Akbar Shah, A. Khan, N. Ahmad, S. Ahmed, N. Ain, A. Mehmood, B. Salah, S.S. Ullah, and R. Khan, Synthesis of graphene oxide (go) and reduced graphene oxide (rgo) and their application as nano-fillers to improve the physical and mechanical properties of medium density fiberboard. Front. Mater. 10, 1206918 (2023). https://doi.org/10.3389/fmats.2023.1206918 [CrossRef] [Google Scholar]
- L.O. Afolabi, O.T. Afolabi-Owolabi, A.M. Elfaghi, D.H. Didane, M.G. Awadh, and A.-M. Akram, Thermal characterization of biofluids for heat transfer fluid in thermal transport technologies. J. Adv. Res. Fluid Mech. Therm. Sci. 89, 134–141 (2022). https://doi.Org/10.37934/arfmts.89.1.134141 [Google Scholar]
- A.F. Al-mahmodi, Y. Munusamy, M.R. Atta, M. Muniyadi, and S.S. Leong, Optimization of synthesis parameters for polyamide 610: Strategic tailoring for superior latent heat performance. Surf. Interfaces. 51, 104692 (2024). https://doi.org/10.1016/j.surfm.2024.104692 [CrossRef] [Google Scholar]
- Gupta, A. Kaushik, and S. Singhal, Amelioration of adsorptive efficacy by synergistic assemblage of functionalized graphene oxide with esterified cellulose nanofibers for mitigation of pharmaceutical waste. J. Hazard. Mater. 424, 127541 (2022). https://doi.org/10.1016/jjhazmat.2021.127541 [CrossRef] [Google Scholar]
- Tawfik, M. Eraky, M.N. Khalil, A.I. Osman, and D.W. Rooney, Sulfonated graphene nanomaterials for membrane antifouling, pollutant removal, and production of chemicals from biomass: A review. Environ. Chem. Lett. 21, 1093–1116 (2023). https://doi.org/10.1007/s10311-022-01538-2 [CrossRef] [Google Scholar]
- Pielichowska, J. Bieda, and P. Szatkowski, Polyurethane/graphite nano-platelet composites for thermal energy storage. Renew. Energy. 91, 456–465 (2016). https://doi.org/10.1016/j.renene.2016.01.076 [CrossRef] [Google Scholar]
- M.E. Darzi, S.I. Golestaneh, M. Kamali, and G. Karimi, Thermal and electrical performance analysis of co-electrospun-electrosprayed pcm nanofiber composites in the presence of graphene and carbon fiber powder. Renew. Energy. 135, 719–728 (2019). https://doi.org/10.1016/j.renene.2018.12.028 [CrossRef] [Google Scholar]
- H.M. Weingrill, K. Resch-Fauster, and C. Zauner, Applicability of polymeric materials as phase change materials. Macromol. Mater. Eng. 303, 1800355 (2018). https://doi.org/10.1002/mame.201800355 [CrossRef] [Google Scholar]
- Díez, W.J.A. Homer, L.J. Leslie, G. Kyriakou, R. Rosal, P.D. Topham, and E. Theodosiou, Chemically cross-linked poly (vinyl alcohol) electrospun fibrous mats as wound dressing materials. J. Chem. Technol. Biotechnol. 97, 620–632 (2022). https://doi.org/10.1002/jctb.7006 [CrossRef] [Google Scholar]
- Y. Qian, N. Han, Z. Zhang, R. Cao, L. Tan, W. Li, and X. Zhang, Enhanced thermal- to-flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Appl. Mater. Interfaces. 11, 4583245843 (2019). https://doi.org/10.1021/acsami.9b18543 [Google Scholar]
- Ma, J. Wang, Y. Wu, Y. Wang, Z. Ji, and S. Xie, Characterization and thermophysical properties of erythritol/expanded graphite as phase change material for thermal energy storage. J. Energy Storage. 46, 103864 (2022). https://doi.org/10.1016Z1.est.2021.103864 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.