Open Access
Issue
E3S Web Conf.
Volume 603, 2025
International Symposium on Green and Sustainable Technology (ISGST 2024)
Article Number 02007
Number of page(s) 7
Section Green Materials
DOI https://doi.org/10.1051/e3sconf/202560302007
Published online 15 January 2025
  1. R. Sankaran, PL Show, CW Ooi, et al., Feasibility assessment of removal of heavy metals and soluble microbial products from aqueous solutions using eggshell wastes. Clean Techn Environ Policy. 2020;22(4):773–786. https://doi.org/10.1007/s10098-019-01792-z [CrossRef] [Google Scholar]
  2. S. Sobhanardakani, L. Tayebi, SV. Hosseini, Health risk assessment of arsenic and heavy metals (Cd, Cu, Co, Pb, and Sn) through consumption of caviar of Acipenser persicus from Southern Caspian Sea. Environ Sci Pollut Res. 2018; 25(3): 2664–2671. https://doi.org/10.1007/s11356-017-0705-8 [CrossRef] [PubMed] [Google Scholar]
  3. M. Xu, P. Hadi, G. Chen, G. McKay, Removal of cadmium ions from wastewater using innovative electronic waste-derived material. J. Hazard. Mater. 2014;273:118–123. https://doi.org/10.1016/j.jhazmat.2014.03.037 [CrossRef] [Google Scholar]
  4. Q. Huang, Y. Zhang, W. Zhou et al., Amorphous molybdenum sulfide mediated EDTA with multiple active sites to boost heavy metal ions removal. CCL. 2021;32(9):2797–2802. https://doi.org/10.1016/j.cclet.2020.12.020 [Google Scholar]
  5. J. Shi, C. Guo, C. Lei et al., High-performance biochar derived from the residue of Chaga mushroom (Inonotus obliquus) for pollutants removal. Bioresour. Technol. 2022;344:126268. https://doi.org/10.1016/j.biortech.2021.126268 [CrossRef] [Google Scholar]
  6. P. Shao, L. Ding, J. Luo et al., Lattice-Defect-Enhanced Adsorption of Arsenic on Zirconia Nanospheres: A Combined Experimental and Theoretical Study. ACS Appl. Mater. Interfaces. 2019;11(33):29736–29745. https://doi.org/10.1021/acsami.9b06041 [CrossRef] [PubMed] [Google Scholar]
  7. S. Kim, KH. Chu, YAJ. Al-Hamadani et al., Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J. 2018;335:896–914. https://doi.org/10.1016/j.cej.2017.11.044 [CrossRef] [Google Scholar]
  8. S. Sobhanardakani, R. Zandipak, Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples. Clean Techn Environ Policy. 2017;19(7):1913–1925. https://doi.org/10.1007/s10098-017-1374-5 [CrossRef] [Google Scholar]
  9. H. Wang, X. Lou, Q. Hu, T. Sun, Adsorption of antibiotics from water by using Chinese herbal medicine residues derived biochar: Preparation and properties studies. J. Mol. Liq. 2021;325:114967. https://doi.org/10.1016/j.molliq.2020.114967 [CrossRef] [Google Scholar]
  10. J. Qu, M. Dong, F. Bi et al., Microwave-assisted one-pot synthesis of ß-cyclodextrin modified biochar for stabilization of Cd and Pb in soil. J. Clean. Prod. 2022;346:131165. https://doi.org/10.1016/j.jclepro.2022.131165 [CrossRef] [Google Scholar]
  11. Y. Zhang, Y. Li, C. Dai, X. Zhou, W. Zhang, Sequestration of Cd(II) with nanoscale zero-valent iron (nZVI): Characterization and test in a two-stage system. Chem. Eng. J. 2014;244:218–226. https://doi.oig/10.1016/i.cej.2014.01.061 [CrossRef] [Google Scholar]
  12. B. Calderon, A. Fullana, Heavy metal release due to aging effect during zero valent iron nanoparticles remediation. Water Res. 2015;83:1–9. https://doi.Org/10.1016/j.watres.2015.06.004 [CrossRef] [Google Scholar]
  13. Y. Mu, F. Jia, Z. Ai, L. Zhang, Iron oxide shell mediated environmental remediation properties of nano zero-valent iron. Environ. Sci.: Nano. 2017;4(1):27–45. https://doi.org/10.1039/C6EN00398B [CrossRef] [Google Scholar]
  14. D. Lv, J. Zhou, Z. Cao et al., Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. Chemosphere. 2019;224:306–315. https://doi.Org/10.1016/j.chemosphere.2019.02.109 [CrossRef] [Google Scholar]
  15. H. Qie, M. Liu, D. Hou et al., The properties and efficacy of S-nZVI as a remediation agent in response to its preparation process and reaction conditions: a truth from metaanalysis. Environ. Sci.: Nano. 2023;10(10):2720–2732. https://doi.org/10.1039/D3EN00431G [CrossRef] [Google Scholar]
  16. Li Z, Wang L, Meng J, et al. Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. J. Hazard. Mater. 2018;344:1–11. https://doi.org/10.1016/j.jhazmat.2017.09.036 [CrossRef] [Google Scholar]
  17. K. Liu, F. Li, J. Cui, S. Yang, L. Fan, Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms. J. Hazard. Mater. 2020;395:122623. https://doi.org/10.1016/j.jhazmat.2020.122623 [CrossRef] [Google Scholar]
  18. M. Ainiwaer, T. Zhang, N. Zhang et al., Synergistic removal of As(III) and Cd(II) by sepiolite-modified nanoscale zero-valent iron and a related mechanistic study. J. Environ. Manage. 2022;319:115658. https://doi.org/10.1016/j.jenvman.2022.115658 [CrossRef] [Google Scholar]
  19. X. Zheng, Q. Wu, C. Huang et al., Synergistic effect and mechanism of Cd(II) and As(III) adsorption by biochar supported sulfide nanoscale zero-valent iron. Environ. Res. 2023;231:116080. https://doi.org/10.1016/j.envres.2023.116080 [CrossRef] [Google Scholar]
  20. S. Zhu, T. Qu, MK. Irshad, J. Shang. Simultaneous removal of Cd(II) and As(III) from co-contaminated aqueous solution by a-FeOOH modified biochar. Biochar. 2020; 2(1):81–92. https://doi.org/10.1007/s42773-020-00040-8 [CrossRef] [Google Scholar]
  21. D. Yang, L. Wang, Z. Li et al., Simultaneous adsorption of Cd(II) and As(III) by a novel biochar-supported nanoscale zero-valent iron in aqueous systems. Sci. Total Environ. 2020;708:134823. https://doi.org/10.1016/j.scitotenv.2019.134823 [CrossRef] [Google Scholar]
  22. J. Wu, D. Huang, X. Liu, J. Meng, C. Tang, J. Xu, Remediation of As(III) and Cd(II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J. Hazard. Mater. 2018;348:10–19. https://doi.org/10.1016/j.jhazmat.2018.01.011 [CrossRef] [Google Scholar]
  23. J. Liu, J. Jiang, Y. Meng et al., Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. J. Hazard. Mater. 2020;388:122026. https://doi.org/10.1016/j.jhazmat.2020.122026 [CrossRef] [Google Scholar]
  24. Y. Rashtbari, H. Arfaeinia, S. Ahmadi et al., Potential of using green adsorbent of humic acid removal from aqueous solutions: equilibrium, kinetics, thermodynamic and regeneration studies. Int. J. Environ. Anal. Chem. 2022;102(17):5373–5390. https://doi.org/10.1080/03067319.2020.1796993 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.