Open Access
Issue
E3S Web Conf.
Volume 603, 2025
International Symposium on Green and Sustainable Technology (ISGST 2024)
Article Number 03001
Number of page(s) 7
Section Renewable Energy Technology
DOI https://doi.org/10.1051/e3sconf/202560303001
Published online 15 January 2025
  1. N. Ali, M. Saleem, K. Shahzad, S. Hussain, A. Chughtai, Effect of operating parameters on production of bio-oil from fast pyrolysis of maize stalk in bubbling fluidized bed reactor. Pol. J. Chem. Tech. 18, 3, 88–96 (2016) https://doi.org/10.1515/pjct-2016-0053 [CrossRef] [Google Scholar]
  2. R.K. Mishra, K. Mohanty, Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Conv. Bioref. (2018) https://doi.org/10.1007/s13399-018-0332-8 [Google Scholar]
  3. S. Sangthong, W. Phetwarotai, M.S. Abu Bakar, B. Cheirsilp, N. Phusunti, Phenol-rich bio-oil from pyrolysis of palm kernel shell and its isolated lignin. Industrial Crops & Products 188, 115648 (2022) https://doi.org/10.1016/j.indcrop.2022.115648 [CrossRef] [Google Scholar]
  4. A. Ahmed, M.S. Abu Bakar, R.S. Sukri, M. Hussain, A. Farooq, S. Moogi, Y.K. Park, Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production. Energy Conversion and Management 226, 113502 (2020) https://doi.Org/10.1016/j.enconman.2020.113502 [CrossRef] [Google Scholar]
  5. Z. Weihong, B. Bin, C. Guanyi, M. Longlong, Y. Beibei, Thermogravimetric characteristics and kinetics of sawdust pyrolysis catalyzed by potassium salt during the process of hydrogen preparation. International Journal of Hydrogen Energy 44, 1586315870 (2019) https://doi.Org/10.1016/j.ijhydene.2019.01.060 [CrossRef] [Google Scholar]
  6. G. Kim, J. Seo, J.W. Choi, J. Jae, J.M. Ha, D.J. Suh, K.Y. Lee, J.K. Jeon, J.K. Kim, Two-step continuous upgrading of sawdust pyrolysis oil to deoxygenated hydrocarbons using hydrotreating and hydrodeoxygenating catalysts. Catalysis Today 303, 130–135 (2018) http://dx.doi.Org/10.1016/j.cattod.2017.09.027 [CrossRef] [Google Scholar]
  7. G.K. Gupta, P.K. Gupta, M.K. Mondal, Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis. Waste Management 87, 499–511 (2019) https://doi.org/10.1016/j.wasman.2019.02.035 [CrossRef] [Google Scholar]
  8. A.K. Varma, L.S. Thakur, R. Shankar, P. Mondal, Pyrolysis of wood sawdust: Effects of process parameters on products yield and characterization of products. Waste Management 89, 224–235 (2019) https://doi.org/10.1016/j.wasman.2019.04.016 [CrossRef] [Google Scholar]
  9. D.R. Nhuchhen, Prediction of carbon, hydrogen, and oxygen compositions of raw and torrefied biomass using proximate analysis. Fuel 180, 348–356 (2016) http://dx.doi.org/10.1016/j.fuel.2016.04.058 [CrossRef] [Google Scholar]
  10. S. Li, S. Xu, S. Liu, C. Yang, Q. Lu, Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Processing Technology 85, 1201–1211 (2004) http://dx.doi.org/10.1016/j.fuproc.2003.11.043 [CrossRef] [Google Scholar]
  11. Y. Elhenawy, K. Fouad, M. Bassyouni, O.A. Al-Qabandi, T. Majozi, Yield and energy outputs analysis of sawdust biomass pyrolysis. Energy Conversion and Management: X 22, 100583 (2024) https://doi.org/10.1016/j.ecmx.2024.100583 [CrossRef] [Google Scholar]
  12. F.-X. Collard, J. Blin, A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews 38, 594–608 (2014) http://dx.doi.org/10.1016/j.rser.2014.06.013 [CrossRef] [Google Scholar]
  13. W. Zhou, Z. Guo, X. Li, Y. Ding, Y. Wang, B. Bai, Co-pyrolysis of sewage sludge and sawdust: Synergistic effects of product yield and synthetic gas calorific value. Journal of the Energy Institute 114, 101599 (2024) https://doi.org/10.1016/j.joei.2024.101599 [CrossRef] [Google Scholar]
  14. H.J. Park, J.I. Dong, J.K. Jeon, Y.K. Park, K.S. Yoo, S.S. Kim, J. Kim, S. Kim, Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chemical Engineering Journal 143, 124–132 (2008) https://doi.org/10.1016/j.cej.2007.12.031 [CrossRef] [Google Scholar]
  15. D. Yu, G. Jin, Y. Pang, Y. Chen, S. Guo, S. Shen, Gas Characteristics of Pine Sawdust Catalyzed Pyrolysis by Additives. Journal of Thermal Science. 30, 333–342 (2021) https://doi.org/10.1007/s11630-020-1244-z [CrossRef] [Google Scholar]
  16. G. Su, N.W. Mohd Zulkifli, H. C. Ong, S. Ibrahim, Q. Bu, R. Zhu, Pyrolysis of oil palm wastes for bioenergy in Malaysia: A review. Renewable and Sustainable Energy Reviews 164, 112554 (2022) https://doi.org/10.1016/j.rser.2022.112554 [CrossRef] [Google Scholar]
  17. L. Zhang, C. Shen, R. Liu, GC-MS and FT-IR analysis of the bio-oil with addition of ethyl acetate during storage. Front. Energy Res. 2, (2014) https://doi.org/10.3389/fenrg.2014.00003 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.