Open Access
Issue
E3S Web Conf.
Volume 603, 2025
International Symposium on Green and Sustainable Technology (ISGST 2024)
Article Number 04002
Number of page(s) 7
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202560304002
Published online 15 January 2025
  1. W. Liu, B. Wang, Y. Guo, J. Zhang, Y. Chen, Experimental investigation on the effects of bed slope and tailwater on dam-break flows. J. Hydrol. 590, 125256 (2020). https://doi.Org/10.1016/j.jhydrol.2020.125256 [CrossRef] [Google Scholar]
  2. H. Ozmen-Cagatay, E. Turhan, S. Kocaman, An experimental investigation of dambreak induced flood waves for different density fluids. Ocean Eng. 243, 110227 (2022). https://doi.Org/10.1016/j.oceaneng.2021.110227 [CrossRef] [Google Scholar]
  3. M. Zhang, Y. Xu, Z. Hao, Y. Qiao, Integrating 1D and 2D hydrodynamic, sediment transport model for dam-break flow using finite volume method. Sci. China Phys. Mech. Astron. 57, 774–783 (2014). https://doi.org/10.1007/s11433-013-5294-z [CrossRef] [Google Scholar]
  4. R. Marsooli, W. Wu, Three-Dimensional Numerical Modeling of Dam-Break Flows with Sediment Transport over Movable Beds. J. Hydraul. Eng. 141, 04014066 (2015). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000947 [CrossRef] [Google Scholar]
  5. T. Uchida, S. Fukuoka, Quasi-3D two-phase model for dam-break flow over movable bed based on a non-hydrostatic depth-integrated model with a dynamic rough wall law. Adv. Water Resour. 129, 311–327 (2019). https://doi.org/10.1016/j.advwatres.2017.09.020 [CrossRef] [Google Scholar]
  6. S. Gong, J. Chen, C. Jiang, S. Xu, F. He, Z. Wu, Prediction of solitary wave attenuation by emergent vegetation using genetic programming and artificial neural networks. Ocean Eng. 234, 109250 (2021). https://doi.org/10.1016/j.oceaneng.2021.109250 [CrossRef] [Google Scholar]
  7. M. Zhang, Y. Xu, Y. Qiao, H. Jiang, Z. Zhang, G. Zhang, Numerical simulation of flow and bed morphology in the case of dam break floods with vegetation effect. J. Hydrodyn. 28, 23–32 (2016). https://doi.org/10.1016/S1001-6058(16)60604-2 [CrossRef] [Google Scholar]
  8. Z. He, T. Wu, H. Weng, P. Hu, G. Wu, Numerical simulation of dam-break flow and bed change considering the vegetation effects. International J. Sediment Res. 32, 105120 (2017). https://doi.org/10.1016/j.ijsrc.2015.04.004 [Google Scholar]
  9. T. Uchida, S. Fukuoka, A. (Thanos) N. Papanicolaou, A. G. Tsakiris, Nonhydrostatic Quasi-3D Model Coupled with the Dynamic Rough Wall Law for Simulating Flow over a Rough Bed with Submerged Boulders. J. Hydraul. Eng. 142, 04016054 (2016). https://doi.org/10.1061/(ASCE)HY.1943-7900.0001198 [CrossRef] [Google Scholar]
  10. T. Uchida, T. Ato, D. Kobayashi, M. F. Maghrebi, Y. Kawahara, Hydrodynamic forces on emergent cylinders in non-uniform flow. Environ. Fluid Mech. 22, 1355–1379 (2022). https://doi.org/10.1007/s10652-022-09898-7 [CrossRef] [Google Scholar]
  11. A. Hoque, S. Husrin, H. Oumeraci, Laboratory studies of wave attenuation by coastal forest under storm surge. Coast. Eng. J. 60, 225–238 (2018). https://doi.org/10.1080/21664250.2018.1486268 [CrossRef] [Google Scholar]
  12. D. Kobayashi, T. Uchida, Propagation characteristics of breaking bores through a permeable resistance and its numerical evaluation method. J. of JSCE 80, 23–16081 (2024). https://doi.org/10.2208/jscejj.23-16081 [Google Scholar]
  13. D. Kobayashi, T. Uchida, Experimental and numerical investigation of breaking bores in straight and meandering channels with different Froude numbers. Coast. Eng. J. 64, 442–457 (2022). https://doi.org/10.1080/21664250.2022.2118431 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.