Open Access
Issue
E3S Web Conf.
Volume 603, 2025
International Symposium on Green and Sustainable Technology (ISGST 2024)
Article Number 04008
Number of page(s) 7
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202560304008
Published online 15 January 2025
  1. T. Oki, S. Kanae, Global hydrological cycles and world water resources. Science. 313, 1068 (2006). https://doi.org/10.1126/science.1128845 [CrossRef] [PubMed] [Google Scholar]
  2. M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016). https://doi.org/10.1126/sciadv.1500323 [CrossRef] [Google Scholar]
  3. A.V. Veettil, A.K. Mishra, Mishra, Potential influence of climate and anthropogenic variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator. J. Environ Manage. 228, 346 (2018). https://doi.org/10.1016/j.jenvman.2018.09.012 [CrossRef] [Google Scholar]
  4. D. Gampe, G. Nikulin, R. Ludwig, Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci Total. Environ. 573, 1503 (2016). https://doi.org/10.1016/j.scitotenv.2016.08.053 [CrossRef] [Google Scholar]
  5. J. Liu, Q. Liu, H. Yang, Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol. Indic. 60, 434 (2016). https://doi.org/10.1016/j.ecolind.2015.07.019 [CrossRef] [Google Scholar]
  6. X.C. Liu, Q.H. Tang, W.F. Liu, T.I.E. Veldkamp, J. Boulange, J.G. Liu, Y. Wada, Z.W. Huang, H. Yang, A spatially explicit assessment of growing water stress in China from the past to the future. Earths Future. 7, 1027 (2019). https://doi.org/10.1029/2019EF001181 [CrossRef] [Google Scholar]
  7. T. Peng, Z. Jin, L. Xiao, Assessing carrying capacity of regional water resources in karst areas, southwest China: a case study. Environ. Dev. Sustain. 25, 15139 (2023). https://doi.org/10.1007/s10668-022-02597-9 [CrossRef] [Google Scholar]
  8. C. Wu, L. Zhou, J. Jin, S. Ning, Z. Zhang, L. Bai, Regional water resource carrying capacity evaluation based on multi-dimensional precondition cloud and risk matrix coupling model. Sci. Total Environ. 710, 136324 (2019). https://doi.org/10.1016/j.scitotenv.2019.136324 [Google Scholar]
  9. P.D. Rahimabadi, M. Behnia, S.N. Molaei, H. Khosravi, H. Azarnivand, Assessment of groundwater resources potential using Improved Water Quality Index (ImpWQI) and entropy-weighted TOPSIS model. Wat. Resour. Man. 10, 1 (2024). https://doi.org/10.1007/s40899-023-00988-y [Google Scholar]
  10. B. Qian, Y.X. Zhu, Y.X. Wang, F. Yan, Can Entropy Weight Method Correctly Reflect the Distinction of Water Quality Indices? Wat. Resour. Man. 34, 3667 (2020). https://doi.org/10.1007/s11269-020-02641-1 [Google Scholar]
  11. D. Bian, X. Yang, W. Xiang, B. Sun, Y. Chen, P. Babuna, M. Li, Z. Yuan, A new model to evaluate water resource spatial equilibrium based on the game theory coupling weight method and the coupling coordination degree. J. Clean. Prod. 366, 132907 (2022). https://doi.org/10.1016/j.jclepro.2022.132907 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.