Open Access
Issue
E3S Web Conf.
Volume 604, 2025
The 4th International Conference on Disaster Management (The 4th ICDM 2024)
Article Number 01002
Number of page(s) 10
Section Risk-Based Disaster Analysis for Regional Development and Spatial Planning
DOI https://doi.org/10.1051/e3sconf/202560401002
Published online 16 January 2025
  1. M. Y. Mohammadi, E. Abbasi, H. Farhadian, and A. Asgari, Implementation of knowledge management measures in flood disaster management: A systematic literature review, Environ. Sustain. Indic., 23, 100431 (2024). https://doi.org/10.1016/j.indic.2024.100431 [Google Scholar]
  2. L. Yang et al., A comprehensive framework for assessing the spatial drivers of flood disasters using an optimal Parameter-based geographical Detector– machine learning coupled model, Geosci. Front., 15, 101889 (2024). https://doi.org/10.1016/j.gsf.2024.101889 [CrossRef] [Google Scholar]
  3. S. Hasbi, Z. Hanim, and S. bin Husain, The implementation optimization of school development plan in flood disaster mitigation policy in tropical rainforest (Case study at state junior high school 5 Samarinda), Soc. Sci. Humanit. Open. 7(100440), 1–7 (2023). [Google Scholar]
  4. I. L. Nugraheni, A. Suyatna, A. Setiawan, and Abdurrahman, Flood disaster mitigation modeling through participation community based on the land conversion and disaster resilience, Heliyon. 8(e09889), 1–14 (2022). https://doi.org/10.1016/j.heliyon.2022.e09889 [Google Scholar]
  5. U. I. Oduah, C. M. Anierobi, and O. G. Ilori, Inventing a robust road-vehicle flood level monitoring device for disaster mitigation, Heliyon. 9(e20784), 1–10 (2023). https://doi.org/10.1016/j.heliyon.2023.e20784 [Google Scholar]
  6. J. Li, Y. Zou, J. Li, and S. Si, Urban spatial, engineering and management resilience capacity enhancement from a flood safety perspective, Water- Energy Nexus. 7, 213–226 (2024). https://doi.org/10.1016/j.wen.2024.07.002 [CrossRef] [Google Scholar]
  7. R. Zhang, Y. Li, T. Chen, and L. Zhou, Flood risk identification in high-density urban areas of Macau based on disaster scenario simulation, Int. J. Disaster Risk Reduct. 107(104485) (2024). https://doi.org/10.1016/j.ijdrr.2024.104485 [CrossRef] [Google Scholar]
  8. M. A. Islam, S. I. Rashid, N. U. I. Hossain, R. Fleming, and A. Sokolov, An integrated convolutional neural network and sorting algorithm for image classification for efficient flood disaster management, Decis. Anal. J. 7(100225), 1–13 (2023). https://doi.org/10.1016/j.dajour.2023.100225 [Google Scholar]
  9. X. Lin, Q. Lu, L. Chen, and I. Brilakis, Assessing dynamic congestion risks of flood-disrupted transportation network systems through time- variant topological analysis and traffic demand dynamics, Adv. Eng. Informatics. 62(102672) (2024). https://doi.org/10.1016/j.aei.2024.102672 [Google Scholar]
  10. A. R. Marian, R. Hijazi, E. Masad, A. Abdel-wahab, and A. R. Marian, Quantifying the Vulnerability of Road Networks to Flood-Induced Closures Using Traffic Simulation, Transp. Eng. 17(100262) (2024). https://doi.org/10.1016/j.treng.2024.100262 [CrossRef] [Google Scholar]
  11. H. He, R. Li, J. Pei, J.-P. Bilodeau, and G. Huang, Current overview of impact analysis and risk assessment of urban pluvial flood on road traffic, Sustain. Cities Soc. 99(104993) (2023). https://doi.org/10.1016/j.scs.2023.104993 [Google Scholar]
  12. S. Perazzini, R. Metulini, and M. Carpita, Integration of flows and signals data from mobile phone network for statistical analyses of traffic in a flooding risk area, Socioecon. Plann. Sci. 90(101747), 1–17 (2023). https://doi.org/10.1016/j.seps.2023.101747 [CrossRef] [Google Scholar]
  13. H. I. Khildan and I. Saputra, The influence of the summarecon bandung area on traffic on jalan Gedebage Selatan, Semin. Nas. dan Disminasi Tugas Akhir 2022, 486–499 (2022). [Google Scholar]
  14. A. N. Agustin, M. Muhibbin, and D. Isnaeni, The Role of Local Government in Overcoming Flood Problems in Malang City. J. Din. 29(2), 7818–7844 (2023). [Google Scholar]
  15. H. Satmiko, Transportation crisis management due to natural disasters, demonstrations, special transportation seasons, and transportation accidents. (Bandung: Bandung Nuansa Cendekia, 2019). [Google Scholar]
  16. D. Tamitiadini, I. Adila, and W. W. A. Dewi, Disaster Communication: Theory and Practical Approach to Disaster Studies in Indonesia. 1st ed. (Malang: UB Press, 2019). [Google Scholar]
  17. E. P. Raharjo, S. Sarjana, and M. Safitri, Transportation infrastructure planning in supporting disaster mitigation: Case study in Mount Gamalama, Jamba J. Disaster Risk Stud. 14(1), 1–11 (2022). https://doi.org/10.4102/jamba.v14i1.1123 [Google Scholar]
  18. A. J. Echendu, Applicability of Indigenous knowledge and methods in flood risk management in a nigerian city, Nat. Hazards Res. 4(2), 239–245 (2024). https://doi.org/10.1016/j.nhres.2023.09.001 [CrossRef] [Google Scholar]
  19. Suripin, Sustainable Urban Drainage Systems. Yogyakarta: (ANDI Offset, 2004). [Google Scholar]
  20. I. Sarwoko, S. Widodo, and G. Z. Mulki, Traffic Management and Engineering at the Imam Bonjol - Daya Nasional Road Intersection in Pontianak City, J. Tek. Sipil. 17(2), 1–9 (2017). [Google Scholar]
  21. B. A. Hermawan, Traffic Management and Engineering in the CBD Area of Bekasi City, J. Pembang. Wil. Kota. 12(1), 27–36 (2015). [Google Scholar]
  22. Department of Public Works, Traffic Management, Regional Cities Urban Transport DKI Jakarta Training. (Dirjen Bina Marga, Jakarta, 1990). [Google Scholar]
  23. F. Miro, Transportation Planning for Students, Planners, and Practitioners. (Jakarta: Erlangga, 2005). [Google Scholar]
  24. T. Kawasaki, Y. Namba, H. Oka, and M. A. Dulebenets, Freight trip distribution using spatiotemporal aggregate data: A modified collective flow diffusion model-based approach, Transp. Res. Interdiscip. Perspect. 21(100904), 1–16 (2023). https://doi.org/10.1016/j.trip.2023.100904 [Google Scholar]
  25. I. Sholichin, Trip Generation and Trip Distribution Analysis in North Surabaya, J. Tek. Sipil KERN. 1(2), 13–22 (2011). [Google Scholar]
  26. G. Galliani, P. Secchi, and F. Ieva, Estimation of dynamic Origin–Destination matrices in a railway transportation network integrating ticket sales and passenger count data, Transp. Res. Part A Policy Pract. 190(104246), 1–26 (2024). https://doi.org/10.1016/j.tra.2024.104246 [CrossRef] [Google Scholar]
  27. T. B. S. Pambudi, Trip Distribution and Trip Assignment Modeling on Gempol Pasuruan Toll Road, Institut Teknologi Sepuluh Nopember, (2017). [Google Scholar]
  28. A. Maulana, S. Sarjana, and T. R. Prastya, Traffic Performance Analysis in The Traditional Market Area. E3S Web of Conferences. 576(05003), 1–18 (2024). https://doi.org/10.1051/e3sconf/202457605003 [CrossRef] [EDP Sciences] [Google Scholar]
  29. R. Tisnawan, F. Ramdhani, and M. R. Ariansyah, Route Planning of Freight Transportation Network in Pekanbaru City with PTV Visum Application, J. RAB Constr. 6(2), 101–111 (2021). [Google Scholar]
  30. Z. I. Pamungkas, Traffic Gyratory as an Effort to Improve Road Network Performance (Case Study of Duta Mall Area Banjarmasin), Bul. Profesi Ins. (2)1, 1–6 (2019). [CrossRef] [Google Scholar]
  31. M. S. Gea and J. Harianto, A Analysis of Road Section Performance Due to Parking on the Road Body (Case Study: Markets and Shops on Jalan Besar Delitua), 1, 1–10 (2011). [Google Scholar]
  32. R. I. Salas and S. Sarjana, Improving Alternative Road Network Performance Through Effectiveness of Ring Roads, J. Transp. Multimoda, 21(2), 111–120 (2024). https://doi.org/10.25104/mtm.v21i2.2277 [CrossRef] [Google Scholar]
  33. S. Sarjana, Smart City in Supporting Sustainable Cities, in 10th International Conference on Information Technology, Computer, and Electrical Engineering, 61–66 (2023). https://doi.org/10.1109/ICITACEE58587.2023.1027 7619. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.