Open Access
Issue |
E3S Web Conf.
Volume 604, 2025
The 4th International Conference on Disaster Management (The 4th ICDM 2024)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 11 | |
Section | Risk-Based Disaster Analysis for Regional Development and Spatial Planning | |
DOI | https://doi.org/10.1051/e3sconf/202560401001 | |
Published online | 16 January 2025 |
- G. Rahman et al., Assessment of landslide susceptibility, exposure, vulnerability, and risk in Shahpur Valley, Eastern Hindu Kush, Front Earth Sci (Lausanne), 10, (2022). https://doi.org/10.3389/feart.2022.953627 [Google Scholar]
- B. Pradhan and A. M. Youssef, Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models, Arabian Journal of Geosciences, 3(3), 319–326 (2010). https://doi.org/10.1007/s12517-009-0089-2 [CrossRef] [Google Scholar]
- S. Ali, P. Biermanns, R. Haider, and K. Reicherter, Landslide susceptibility mapping by using a geographic information system (GIS) along the China-Pakistan Economic Corridor (Karakoram Highway), Pakistan, Natural Hazards and Earth System Sciences, 19(5), 999–1022, (2019). https://doi.org/10.5194/nhess-19-999-2019 [CrossRef] [Google Scholar]
- D. Nolasco-Javier and L. Kumar, Deriving the rainfall threshold for shallow landslide early warning during tropical cyclones: a case study in northern Philippines, Natural Hazards, 90(2), 921–941 (2018). https://doi.org/10.1007/s11069-017-3081-2 [CrossRef] [Google Scholar]
- M. G. A. Huigen and I. C. Jens, Socio-Economic Impact of Super Typhoon Harurot in San Mariano, Isabela, the Philippines, World Dev, 34(12), 2116–2136, (2006). https://doi.org/10.1016/j.worlddev.2006.03.006 [CrossRef] [Google Scholar]
- M. J. Froude and D. N. Petley, Global fatal landslide occurrence from 2004 to 2016, Natural Hazards and Earth System Sciences, 18(8), 2161–2181, (2018). https://doi.org/10.5194/nhess-18-2161-2018 [CrossRef] [Google Scholar]
- K. C. Chao, J. B. Kang, and J. D. Nelson, Challenges in water migration modeling for expansive soils. GeoShanghai Conference, Shanghai, China, 204–213 (2014). [Google Scholar]
- K. C. Chao, J. B. Kang, J. D. Nelson, Evaluation of failure of embankment slope constructed with expansive soils, Geotechnical Engineering Journal of the SEAGS & AGSSEA, 49(2), 140-149 (2018). [Google Scholar]
- W. H. Schulz, J. P. McKenna, J. D. Kibler, and G. Biavati, Relations between hydrology and velocity of a continuously moving landslide-evidence of pore- pressure feedback regulating landslide motion?, Landslides, 6(3), 181–190, (2009). https://doi.org/10.1007/s10346-009-0157-4 [Google Scholar]
- J. Mathew, D. G. Babu, S. Kundu, K. V. Kumar, and C. C. Pant, Integrating intensity-duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India, Landslides, 11(4), 575–588, (2014). https://doi.org/10.1007/s10346-013- 0408-2 [CrossRef] [Google Scholar]
- T. Amarathunga, K. C. Chao, and J. D. Nelson, Effect of climate change on rainfall-induced failures for embankment slopes in Timor-Leste. Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering, Sydney, Australia, 2341–2347, (2022). [Google Scholar]
- P. Morya, S. Kongpanickul, K. C. Chao, and R. Ishenaliev, Rainfall-induced failure on unsaturated fill and highly weathered Schist slopes. The 7th Asia- Pacific Unsaturated Soils Conference, Nagoya, Japan, 7(2), 556–564, (2019). [Google Scholar]
- J. L. Zêzere, S. Pereira, R. Melo, S. C. Oliveira, and R. A. C. Garcia, Mapping landslide susceptibility using data-driven methods, Science of the Total Environment, 589, (2017). https://doi.org/10.1016/j.scitotenv.2017.02.188 [Google Scholar]
- S. Zhang, L. Zhao, R. Delgado-Tellez, and H. Bao, A physics-based probabilistic forecasting model for rainfall-induced shallow landslides at regional scale, Natural Hazards and Earth System Sciences, 18(3), 969–982, (2018). https://doi.org/10.5194/nhess-18-969-2018 [CrossRef] [Google Scholar]
- V. Medina, M. Hürlimann, Z. Guo, A. Lloret, and J. Vaunat, Fast physically-based model for rainfall- induced landslide susceptibility assessment at regional scale, Catena (Amst), 201, (2021). https://doi.org/10.1016/j.catena.2021.105213 [Google Scholar]
- J. Gray, S. Lloyd, S. Healey, and A. Opdyke, Urban and rural patterns of typhoon mortality in the Philippines, Progress in Disaster Science, 14(100234), (2022). https://doi.org/10.1016/J.PDISAS.2022.100234 [CrossRef] [Google Scholar]
- G. D. C. Santos, 2020 Tropical cyclones in the Philippines: A review, Tropical Cyclone Research and Review, 10(3), 191–199, (2021). https://doi.org/10.1016/j.tcrr.2021.09.003 [CrossRef] [Google Scholar]
- R. N. Eco et al., Journal of the Philippine Geoscience and Remote Sensing Society (2015). Available: http://philgrss.org/journal/ [Google Scholar]
- PAGASA. Climate Change in the Philippines. Philippine Atmospheric, Geophysical and Astronomical Services Administration. (2011). [Google Scholar]
- G. M. Saulnier, K. Beven, and C. Obled, Including spatially variable effective soil depths in TOPMODEL, J Hydrol (Amst), 202(1–4), 158–172 (1997). https://doi.org/10.1016/S0022-1694(97)00059-0 [CrossRef] [Google Scholar]
- F. de Luiz Rosito Listo, M. C. Villaça Gomes, and F. S. Ferreira, Evaluation of shallow landslide susceptibility and Factor of Safety variation using the TRIGRS model, Serra do Mar Mountain Range, Brazil, J South Am Earth Sci, 107, (2021). https://doi.org/10.1016/j.jsames.2020.103011 [Google Scholar]
- G. Grelle et al., Space-time prediction of rainfall- induced shallow landslides through a combined probabilistic/deterministic approach, optimized for initial water table conditions, Bulletin of Engineering Geology, and the Environment, 73(3), 877–890 (2014). https://doi.org/10.1007/s10064-013-0546-8 [CrossRef] [Google Scholar]
- L. Schilirò, J. Cepeda, G. Devoli, and L. Piciullo, Regional analyses of rainfall-induced landslide initiation in upper gudbrandsdalen (South-eastern Norway) using TRIGRS model, Geosciences (Switzerland), 11(1), 1–15, (2021). https://doi.org/10.3390/geosciences11010035 [Google Scholar]
- Y. Zhang and M. G. Schaap, Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3), J Hydrol (Amst), 547, 39–53, (2017). https://doi.org/10.1016/j.jhydrol.2017.01.004 [CrossRef] [Google Scholar]
- C. N. Liu and C. C. Wu, Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach, Environmental Geology, 55(4), 907–915, (2008). https://doi.org/10.1007/s00254-007-1042-x [CrossRef] [Google Scholar]
- R. L. Baum, W. Z. Savage, and J. W. Godt, TRIGRS- A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0, [Online]. Available: http://geohazards.cr.usgs.gov/ [Google Scholar]
- R. M. Iverson, Landslide triggering by rain infiltration,” Water Resour Res, 36(7), 1897–1910, (2000). https://doi.org/10.1029/2000WR900090 [Google Scholar]
- M. Hürlimann, Z. Guo, C. Puig-Polo, and V. Medina, Impacts of future climate and land cover changes on landslide susceptibility: regional scale modelling in the Val d’Aran region (Pyrenees, Spain), Landslides, 19(1), 99–118, (2022). https://doi.org/10.1007/s10346-021-01775-6 [CrossRef] [Google Scholar]
- A. Parapan, K. C. Chao, K. Saowiang, S. Soralump, and T. Nontapot, Evaluation of key parameters in rainfall-induced shallow landslide analysis: Are Di Village case, IOP Conference Series: Earth and Environmental Science, 1334(1), 012015, (2024). https://doi.org/10.1088/1755-1315/1334/1/012015 [CrossRef] [Google Scholar]
- D. Salciarini, C. Tamagnini, F. Ronchi, E. Volpe, and G. Fanelli, An approach for large-scale soil characterization for the application of non-structural landslide risk mitigation, Rivista Italiana di Geotecnica, 51(3), 7–21, (2017). https://doi.org/10.19199/2017.3.0557-1405.07 [Google Scholar]
- E. Yesilnacar and T. Topal, Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey), Eng Geol, 79(3–4), 251–266 (2005). https://doi.org/10.1016/j.enggeo.2005.02.002 [CrossRef] [Google Scholar]
- M. P. Tsai, Y. C. Hsu, H. C. Li, H. M. Shu, and K. F. Liu, Application of simulation technique on debris flow hazard zone delineation: A case study in the Daniao tribe, Eastern Taiwan, Natural Hazards and Earth System Science, 11(11), 3053–3062, (2011). https://doi.org/10.5194/nhess-11-3053-2011 [CrossRef] [Google Scholar]
- Y. H. Wu, K. F. Liu, and Y. C. Chen, Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study, J Mt Sci, 10(2), 293–304, (2013). https://doi.org/10.1007/s11629-013-2511-1 [CrossRef] [Google Scholar]
- Y. C. Hsu and K. F. Liu, Combining TRIGRS and DEBRIS-2D models for the simulation of a rainfall infiltration induced shallow landslide and subsequent debris flow, Water (Switzerland), 11(5), (2019). https://doi.org/10.3390/w11050890 [Google Scholar]
- K. F. Liu and M. C. Huang, Numerical simulation of debris flow with application on hazard area mapping, in Computational Geosciences, 221–240, (2006). https://doi.org/10.1007/s10596-005-9020-4 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.