Open Access
Issue |
E3S Web Conf.
Volume 604, 2025
The 4th International Conference on Disaster Management (The 4th ICDM 2024)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 8 | |
Section | Risk-Based Disaster Analysis for Regional Development and Spatial Planning | |
DOI | https://doi.org/10.1051/e3sconf/202560401004 | |
Published online | 16 January 2025 |
- T. Gravina, E. Figliozzi, N. Mari, and F. De Luca Tupputi Schinosa, Landslide risk perception in Frosinone (Lazio, Central Italy). Landslides. 14(4), 1419-1429 (2017). [CrossRef] [Google Scholar]
- D. Cruden, A simple definition of a landslide. Bulletin of Engineering Geology and the Environment. 43(1) (1991). https://doi.org/10.1007/BF02590167 [Google Scholar]
- P. Banerjee, M. K. Ghose, and R. Pradhan, Analytic hierarchy process and information value method- based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya. Arabian Journal of Geosciences. 11, 1–18 (2018). https://doi.org/10.1007/s12517-018-3488-4 [CrossRef] [Google Scholar]
- K. Sharma, A. K. Saraf, J. Das, S. S. Baral, S. Borgohain, and G. Singh, Mapping and change detection study of Nepal-2015 earthquake-induced landslides. Journal of the Indian Society of Remote Sensing. 46, 605–615 (2018). https://doi.org/10.1007/s12524-017-0720-8 [CrossRef] [Google Scholar]
- L. P. H. VanBeek, Assessment of the influence of land use and climate changes on landslide activity in a Mediterranean environment, Doctoral dissertation (2002) [Google Scholar]
- S. D. Pardeshi, S. E. Autade, and S. S. Pardeshi, Landslide hazard assessment: recent trends and techniques. SpringerPlus. 2, 1-11 (2013). https://doi.org/10.1186/2193-1801-2-523 [CrossRef] [Google Scholar]
- L. Ayalew, and H. Yamagishi, The application of GIS- based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology. 65(1-2), 15–31 (2005). https://doi.org/10.1016/j.geomorph.2004.06.010 [CrossRef] [Google Scholar]
- Yalcin, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena. 72(1), 1-12 (2008). https://doi.org/10.1016/j.catena.2007.01.003 [CrossRef] [Google Scholar]
- Winter, M. G. A strategic approach to landslide risk reduction. International Journal of Landslide and Environment. 1, 14–23 (2014). [Google Scholar]
- Galli, M. and Guzzetti, F Landslide vulnerability criteria: a case study from Umbria, Central Italy. Environmental management. 40(4), 649-665 (2007). https://doi.org/10.1007/s00267-006-0325-4 [CrossRef] [PubMed] [Google Scholar]
- Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage, W. Z. Guidelines for landslide susceptibility, hazard, and risk zoning for land use planning. Engineering geology. 102, (3-4). 85-98 (2008). https://doi.org/10.1016/j.enggeo.2008.03.022 [CrossRef] [Google Scholar]
- Ilia, I., Koumantakis, I., Rozos, D., Koukis, G., and Tsangaratos, P. A geographical information system (GIS) based probabilistic certainty factor approach in assessing landslide susceptibility: the case study of Kimi, Euboea, Greece. In Engineering Geology for Society and Territory, 2, Landslide Processes, 1199-1204 (2015). https://doi.org/10.1007/978-3-319- 09057-3_210 [CrossRef] [Google Scholar]
- Kuriakose, S. L., Sankar, G., and Muraleedharan, C. History of landslide susceptibility and a chorology of landslide-prone areas in the Western Ghats of Kerala, India. Environmental geology. 57, 1553-1568 (2009). https://doi.org/10.1007/s00254-008-1431-9 [CrossRef] [Google Scholar]
- VanWesten, C. J., Van Asch, T. W., and Soeters, R. Landslide hazard and risk zonation why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65,167-184 (2006). https://doi.org/10.1007/s10064-005-0023-0 [CrossRef] [Google Scholar]
- Lin, Q., and Wang, Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides, 15, 2357-2372 (2018). https://doi.org/10.1007/s10346-018-1037-6 [Google Scholar]
- Abdulwahid, W. M., and Pradhan, B. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Landslides, 14, 1057-1076 (2017). https://doi.org/10.1007/s10346-016-0744-0 [Google Scholar]
- Bhatt, B. P., Awasthi, K. D., Heyojoo, B. P., Silwal, T., and Kafle, G. Using geographic information system and analytical hierarchy process in landslide hazard zonation. Applied Ecology and Environmental Sciences, 1(2), 14–22 (2013). https://doi.org/10.12691/aees-1-2-1 [CrossRef] [Google Scholar]
- Budimir, M. E. A., Atkinson, P. M., and Lewis, H. G. A systematic review of landslide probability mapping using logistic regression. Landslides, 12, 419-436 (2015). https://doi.org/10.1007/s10346-014-0550-5 [Google Scholar]
- Saaty, T. L. The analytic hierarchy process (AHP). The Journal of the Operational Research Society, 41(11), 1073–1076 (1980). https://doi.org/10.1016/0377-2217(94)90222-4 [Google Scholar]
- Shahabi, H., Keihanfard, S., Ahmad, B. B., and Amiri, M. J. T. Evaluating Boolean, AHP, and WLC methods for selecting waste landfill sites using GIS and satellite images. Environmental Earth Sciences. 71, 4221-4233 (2014). https://doi.org/10.1007/s12665-013-2816-y [CrossRef] [Google Scholar]
- Das, I., Sahoo, S., van Westen, C., Stein, A., and Hack, R. Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system along a road section in the northern Himalayas (India). Geomorphology. 114(4), 627-637 (2010) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.