Open Access
Issue
E3S Web Conf.
Volume 608, 2025
EU-CONEXUS EENVIRO Research Conference - The 9th Conference of the Sustainable Solutions for Energy and Environment (EENVIRO 2024)
Article Number 05004
Number of page(s) 13
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202560805004
Published online 22 January 2025
  1. Global_Alliance_for_Buildings_and_Construction, Global Status Report for Buildings and Construction 2020 United Nations Environment Programme 2021. [Google Scholar]
  2. Boje, C., et al., Towards a semantic Construction Digital Twin: Directions for future research Automation in construction, 2020 114: p. 103179. [CrossRef] [Google Scholar]
  3. Tao, F., et al., Digital twin in industry: State-of-the-art IEEE Transactions on industrial informatics, 2018 15(4): p. 2405-2415. [Google Scholar]
  4. Berville, C., et al., Enhancing solar façade thermal performance with PCM spheres: A CFD investigation Journal of Building Physics 0(0): p. 17442591231204360. [Google Scholar]
  5. Lahmer, E.B., et al., Quality of heat transfer assessment of two microprocessors by double-layered mini channel heat sink cooling system for moderate Reynolds number Thermal Science and Engineering Progress, 2023 41: p. 101804. [CrossRef] [Google Scholar]
  6. Pop, O., et al., Numerical investigation of cascaded phase change materials use in transpired solar collectors Energy Reports, 2022 8: p 184-193. [CrossRef] [Google Scholar]
  7. Azhar, S., Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry Leadership and management in engineering, 2011. 11(3): p 241-252. [CrossRef] [Google Scholar]
  8. Eastman, C.M., BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors 2011: John Wiley & Sons. [Google Scholar]
  9. Sacks, R., et al., BIM handbook: A guide to building information modeling for owners, designers, engineers, contractors, and facility managers 2018: John Wiley & Sons. [CrossRef] [Google Scholar]
  10. Kassem, M., et al., BIM in facilities management applications: a case study of a large university complex Built Environment Project and Asset Management, 2015. 5(3): p 261-277. [CrossRef] [Google Scholar]
  11. Volk, R., J Stengel, and F Schultmann, Building Information Modeling (BIM) for existing buildings—Literature review and future needs Automation in construction, 2014 38: p 109-127. [CrossRef] [Google Scholar]
  12. Becerik-Gerber, B., et al., Application areas and data requirements for BIM-enabled facilities management Journal of construction engineering and management, 2012 138(3): p 431-442. [CrossRef] [Google Scholar]
  13. Won, J., et al., Where to focus for successful adoption of building information modeling within organization Journal of construction engineering and management, 2013 139(11): p 04013014. [CrossRef] [Google Scholar]
  14. Shafto, M., et al., Draft modeling, simulation, information technology & processing roadmap Technology area, 2010 11: p 1-32. [Google Scholar]
  15. Khajavi, S.H., et al., Digital twin: vision, benefits, boundaries, and creation for buildings IEEE access, 2019 7: p 147406-147419. [CrossRef] [Google Scholar]
  16. Bilal, M., et al., Big Data in the construction industry: A review of present status, opportunities, and future trends Advanced Engineering Informatics, 2016 30(3): p 500-521. [CrossRef] [Google Scholar]
  17. Lu, Y., et al., Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues Robotics and computer-integrated manufacturing, 2020 61: p 101837. [CrossRef] [Google Scholar]
  18. Fuller, A., et al., Digital twin: Enabling technologies, challenges and open research. IEEE access, 2020 8: p 108952-108971. [CrossRef] [Google Scholar]
  19. Zaballos, A., et al., A smart campus’ digital twin for sustainable comfort monitoring. Sustainability, 2020 12(21): p 9196. [CrossRef] [Google Scholar]
  20. Amayri, M., et al., Estimating occupancy using interactive learning with a sensor environment: Real-time experiments IEEE Access, 2019 7: p 53932-53944. [CrossRef] [Google Scholar]
  21. AlBalkhy, W., et al., Digital twins in the built environment: Definition, applications, and challenges Automation in Construction, 2024 162: p 105368. [CrossRef] [Google Scholar]
  22. Arowoiya, V.A., R.C. Moehler, and Y Fang, Digital twin technology for thermal comfort and energy efficiency in buildings: A state-of-the-art and future directions. Energy and Built Environment, 2024 5(5): p 641-656. [CrossRef] [Google Scholar]
  23. Rasheed, A., O San, and T Kvamsdal, Digital twin: Values, challenges and enablers from a modeling perspective IEEE access, 2020 8: p 21980-22012. [CrossRef] [Google Scholar]
  24. van Dinter, R., B Tekinerdogan, and C Catal, Predictive maintenance using digital twins: A systematic literature review Information and Software Technology, 2022. 151: p 107008. [CrossRef] [Google Scholar]
  25. Agrawal, A., M Fischer, and V Singh, Digital twin: From concept to practice. Journal of Management in Engineering, 2022 38(3): p 06022001. [CrossRef] [Google Scholar]
  26. Lewis, R.H., et al., Fire and smoke digital twin–A computational framework for modeling fire incident outcomes Computers, Environment and Urban Systems, 2024 110: p 102093. [CrossRef] [Google Scholar]
  27. Park, J.-S., et al., Human-focused digital twin applications for occupational safety and health in workplaces: a brief survey and research directions Applied Sciences, 2023 13(7): p 4598. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.