Open Access
Issue
E3S Web Conf.
Volume 609, 2025
The 7th International Conference on Multidiscipline Approaches for Sustainable Rural Development (ICMA SURE 2024)
Article Number 02006
Number of page(s) 5
Section Life Sciences
DOI https://doi.org/10.1051/e3sconf/202560902006
Published online 24 January 2025
  1. Krawic C, Anatoly Zhitkovich Chapter Two - Chemical mechanisms of DNA damage by carcinogenic chromium(VI). Advances in Pharmacology Volume 96, 2023, Pages 25-46. https://doi.org/10.1016/bs.apha.2022.07.003 [CrossRef] [PubMed] [Google Scholar]
  2. Qian, J.; Zhou, J.; Wang, L.; Wei, L.; Li, Q.; Wang, D.; Wang, Q. Direct Cr (VI) Bio-Reduction with Organics as Electron Donor by Anaerobic Sludge. Chem. Eng. J. 2017, 309, 330–338. [CrossRef] [CrossRef] [Google Scholar]
  3. Rahman, Z., and Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb) on the total environment: an overview. Environ. Monit. Assess. 191:419. doi: 10.1007/s10661-019-7528-7 [CrossRef] [PubMed] [Google Scholar]
  4. Chen, J.; Tian, Y. Hexavalent Chromium Reducing Bacteria: Mechanism of Reduction and Characteristics. Environ. Sci. Pollut. Res. 2021, 28, 20981–20997. [CrossRef] [CrossRef] [PubMed] [Google Scholar]
  5. Xia, S.; Song, Z.; Jeyakumar, P.; Shaheen, S.M.; Rinklebe, J.; Ok, Y.S.; Bolan, N.; Wang, H. A Critical Review on Bioremediation Technologies for Cr(VI)-Contaminated Soils and Wastewater. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1027–1078. [CrossRef] [CrossRef] [Google Scholar]
  6. Zheng, X.; Li, S.; Li, J.; Lv, Y.; Wang, X.; Wu, P.; Yang, Q.; Tang, Y.; Liu, Y.; Zhang, Z. Hexavalent Chromium Induces Renal Apoptosis and Autophagy via Disordering the Balance of Mitochondrial Dynamics in Rats. Ecotoxicol. Environ. Saf. 2020, 204, 111061. [CrossRef] [Google Scholar]
  7. Salami, O.S.; Adeyemi, J.A.; Olawuyi, T.S.; Barbosa, F., Jr.; Adedire, C.O. Tissue Distributions and Toxic Effects of Hexavalent Chromium in Laboratory-Exposed Periwinkle (Littorina littorea Linnaeus). Animals 2023, 13, 3412. https://doi.org/10.3390/ ani13213412 [CrossRef] [PubMed] [Google Scholar]
  8. Rudiyanti S, Suryanti Suryanti, Churun Ain. Bioconcentration of Chromium (Cr) on The Soft Tissue of Mussels (Perna viridis, Linnaeus 1758) in Tambak Lorok Waters, Semarang. Jurnal Kelautan Tropis 2023. 26(2):245-254 [CrossRef] [Google Scholar]
  9. Rara A.T.C.S.D. Bioconcentration and Bioaccumulation of Chromium Heavy Metal in Small-Sclae Catfish Farming Ponds. Al-Hayat: Journal of Biology and Applied Biology 2023. 6(1): 15-22 DOI.10.21580/ah.v6i1.14615 [Google Scholar]
  10. Shin, D.Y.; Lee, S.M.; Jang, Y.; Lee, J.; Lee, C.M.; Cho, E.-M.; Seo, Y.R. Adverse Human Health Effects of Chromium by Exposure Route: A Comprehensive Review Based on Toxicogenomic Approach. Int. J. Mol. Sci. 2023, 24, 3410. https://doi.org/10.3390/ ijms24043410 [CrossRef] [Google Scholar]
  11. Hong Li, Qiongyu Chen, Shien Li, Wu Yao, Lingh ong Li, Xianglin Shi, Liying Wang, Vince Castra nova, Val Vallyathan, Erik Erns, and Chen Chen. Effect of Cr(VI) Exposure on Sperm [2] Quality: Human and Animal Studies. The Annals of Occupational Hygiene. 2001. 45(7): 505-511. https://doi.org/10.1016/S0003-4878(01)00004-7 [CrossRef] [PubMed] [Google Scholar]
  12. Yoisungnern T, Das J, Choi Y-J, Parnpai R, Kim J- H. Effect of hexavalent chromium-treated sperm on in vitro fertilization and embryo development. Toxicology and Industrial Health. 2016;32(9):1700-1710. doi:10.1177/0748233715579805 [CrossRef] [PubMed] [Google Scholar]
  13. Wuri L, Joe A. Arosh, John Z. Wu, Sakhila K. Banu. Exposure to hexavalent chromium causes infertility by disrupting cytoskeletal machinery and mitochondrial function of the metaphase II oocytes in superovulated rats. Toxicology Reports, 2022. 9: 219-229. https://doi.org/10.1016/j.toxrep.2022.02.002 [CrossRef] [Google Scholar]
  14. Wijayanti GE, Sharon Hillary, Ani Septiani, Anisa Aulia, and Anastasia E. Sintanora. 2022. LC50 and Effect of Sublethal Concentration of K2Cr2O7 on Different Developmental Stages of Osteochilus vittatus. Advances in Biological Sciences Research, volume 22: 297-302 [Google Scholar]
  15. Hillary S, Hernayanti, G.E. Wijayanti. 2022. Germ Cells and Gonadal Development in a Teleost, Osteochilus vittatus (Valenciennes, 1842) Exposed to Potassium Dichromate. Omni-Akuatika 18(2): 125 – 136, 2022 [CrossRef] [Google Scholar]
  16. Xu J, Zhao M, Pei L, et al. Oxidative stress and DNA damage in a long-term hexavalent chromium-exposed population in North China: a cross-sectional study. BMJ Open 2018;8:e021470. doi:10.1136/ bmjopen-2017-021470 [CrossRef] [PubMed] [Google Scholar]
  17. Singh, V.; Singh, N.; Verma, M.; Kamal, R.; Tiwari, R.; Sanjay Chivate, M.; Rai, S.N.; Kumar, A.; Singh, A.; Singh, M.P.; et al. Hexavalent-Chromium-Induced Oxidative Stress and the Protective Role of Antioxidants against Cellular Toxicity. Antioxidants 2022, 11, 2375. https://doi.org/10.3390/antiox11122375 [CrossRef] [PubMed] [Google Scholar]
  18. Randox MDA Manual. 2007. Randox Laboratories Limited. 55 Diamond Road Crumlin, Country Antrim, United Kingdom. [Google Scholar]
  19. Mishra, S.; Bharagava, R.N. Toxic and Genotoxic Effects of Hexavalent Chromium in Environment and Its Bioremediation Strategies. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 1–32. [CrossRef] [PubMed] [CrossRef] [PubMed] [Google Scholar]
  20. Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [CrossRef] [Google Scholar]
  21. Canakci CF, Cicek Y, Yildirim A, Sezer U, Canakci V. Increased levels of 8-hydroxydeoxyguanosine and malondialdehyde and its relationship with antioxidant enzymes in saliva of periodontitis patients. Eur J Dent. 2009;3:100–6. [CrossRef] [Google Scholar]
  22. Haro Girón, S.; Monserrat Sanz, J.; Ortega, M.A.; Garcia-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Boaru, D.L.; de Leon-Oliva, D.; Guijarro, L.G.; Atienza-Perez, M.; et al. Prognostic Value of Malondialdehyde (MDA) in the Temporal Progression of Chronic Spinal Cord Injury. J. Pers. Med. 2023, 13, 626. https://doi.org/10.3390/ jpm13040626 [CrossRef] [Google Scholar]
  23. Jakobse K, Oddmund Bakke, Kjetill Østgaard, Lind a R. White, Kristen B. Eik-nes. Effects of potassium dichromate on the cell cycle of an established human cell line (NHIK 3025). Toxicology 1982, 24(3–4): 281-292 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.