Open Access
Issue
E3S Web Conf.
Volume 609, 2025
The 7th International Conference on Multidiscipline Approaches for Sustainable Rural Development (ICMA SURE 2024)
Article Number 04006
Number of page(s) 6
Section Health Sciences
DOI https://doi.org/10.1051/e3sconf/202560904006
Published online 24 January 2025
  1. M. S. Al-Naimi, H. A. Rasheed, N. R. Hussien, H. M. Al-Kuraishy, and A. I. Al-Gareeb, “Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury,” J Adv Pharm Technol Res, vol. 10, no. 3, pp. 95-99, Jul-Sep 2019, doi: 10.4103/japtr.JAPTR_336_18. [CrossRef] [PubMed] [Google Scholar]
  2. V. R. Movaliya, “In Vitro Nephroprotective Activity of Selected Herbal Plants on Vero Cell Line,” International Journal of Pharmacognosy & Chinese Medicine, vol. 4, no. 1, pp. 1-8, 2020, doi: 10.23880/ipcm-16000198. [CrossRef] [Google Scholar]
  3. P. Subramani, “Nephroprotective activity of ethanolic extract of Melia azadirachta against H2O2 induced toxicity in vero cell line,” International Journal of Applied Biology and Pharmaceutical Technology, vol. 6, no. 4, 2015. [Google Scholar]
  4. P. Singh, M. M. Srivastava, and L. D. Khemani, “Renoprotective effects of Andrographis paniculata (Burm. f.) Nees in rats,” Ups J Med Sci, vol. 114, no. 3, pp. 136-9, 2009, doi: 10.1080/03009730903174321. [CrossRef] [PubMed] [Google Scholar]
  5. A. B. B. Prananta et al., “Renoprotective Effect Of Sambiloto (Andrographis Paniculata) Leaf Extract On Lipopolysaccharide – Induced Septic Rats,” Journal of Biomedicine and Translational Research, vol. 9, no. 1, pp. 25-30, 2023, doi: 10.14710/jbtr.v9i1.17286. [CrossRef] [Google Scholar]
  6. K. Padmalochana, “Nephroprotective Potential Compounds from Leaves Extracts of Andrographis Paniculata,” Texila International Journal of Basic Medical Sciences, vol. 2, no. 2, pp. 23-29, 2017, doi: 10.21522/TIJBMS.2016.02.02.Art003. [CrossRef] [Google Scholar]
  7. L. Ye et al., “Poor oral bioavailability of a promising anticancer agent andrographolide is due to extensive metabolism and efflux by P-glycoprotein,” J Pharm Sci, vol. 100, no. 11, pp. 5007-17, Nov 2011, doi: 10.1002/jps.22693. [CrossRef] [Google Scholar]
  8. M. Casamonti, L. Risaliti, G. Vanti, V. Piazzini, M. C. Bergonzi, and A. R. Bilia, “Andrographolide Loaded in Micro- and Nano-Formulations: Improved Bioavailability, Target-Tissue Distribution, and Efficacy of the “King of Bitters”,” Engineering, vol. 5, no. 1, pp. 69-75, 2019, doi: 10.1016/j.eng.2018.12.004. [CrossRef] [Google Scholar]
  9. H. Sulistyo, D. W. Kurniawan, and L. Rujito, “Biochemical and histopathological effects of green tea nanoparticles in ironized mouse model,” Research in Pharmaceutical Sciences, vol. 12, no. 2, pp. 99-106, 2017. [CrossRef] [PubMed] [Google Scholar]
  10. P. Kumar, A. Nagarajan, and P. D. Uchil, “Analysis of Cell Viability by the MTT Assay,” Cold Spring Harb Protoc, vol. 2018, no. 6, Jun 1 2018, doi: 10.1101/pdb.prot095505. [Google Scholar]
  11. N. U. Hasanah et al., “Nephroprotective Effects of Cardamom Essential Oil (Amomum compactum Soland. Ex Maton) in Kidney Cells,” Indonesian Journal of Biotechnology, vol. 28, no. 2, 2023, doi: 10.22146/ijbiotech.79642. [Google Scholar]
  12. S. A. Abass et al., “Unraveling the Nephroprotective Potential of Papaverine against Cisplatin Toxicity through Mitigating Oxidative Stress and Inflammation: Insights from In Silico, In Vitro, and In Vivo Investigations,” Molecules, vol. 29, no. 9, Apr 23 2024, doi: 10.3390/molecules29091927. [CrossRef] [Google Scholar]
  13. T. A Costa-Silva, C. da Silva Meira, N. Frazzatti-Gallina, and V. L. Pereira-Chioccola, “Toxoplasma gondii antigens: recovery analysis of tachyzoites cultivated in Vero cell maintained in serum free medium,” Exp Parasitol, vol. 130, no. 4, pp. 463-9, Apr 2012, doi: 10.1016/j.exppara.2012.01.005. [CrossRef] [Google Scholar]
  14. S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, and F. Rizzolio, “The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine,” Molecules, vol. 25, no. 1, Dec 27 2019, doi: 10.3390/molecules25010112. [CrossRef] [Google Scholar]
  15. B. B. Ratliff, W. Abdulmahdi, R. Pawar, and M. S. Wolin, “Oxidant Mechanisms in Renal Injury and Disease,” Antioxid Redox Signal, vol. 25, no. 3, pp. 119-46, Jul 20 2016, doi: 10.1089/ars.2016.6665. [CrossRef] [PubMed] [Google Scholar]
  16. Y. Sharifuddin, E. M. Parry, and J. M. Parry, “The genotoxicity and cytotoxicity assessments of andrographolide in vitro,” Food Chem Toxicol, vol. 50, no. 5, pp. 1393-8, May 2012, doi: 10.1016/j.fct.2012.01.039. [CrossRef] [Google Scholar]
  17. A. A. Ala, B. B. Olotu, and C. M. D. Ohia, “Assessment of cytotoxicity of leaf extracts of Andrographis paniculata and Aspilia africana on murine cells in vitro,” Arch Basic Appl Med., vol. 6, no. 1, pp. 61-65, February 2018. [Google Scholar]
  18. M. S. Hossain, Z. Urbi, A. Sule, and K. M. Hafizur Rahman, “Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology,” ScientificWorldJournal, vol. 2014, p. 274905, 2014, doi: 10.1155/2014/274905. [Google Scholar]
  19. E. Mussard, A. Cesaro, E. Lespessailles, B. Legrain, S. Berteina-Raboin, and H. Toumi, “Andrographolide, a Natural Antioxidant: An Update,” Antioxidants (Basel), vol. 8, no. 12, Nov 20 2019, doi: 10.3390/antiox8120571. [Google Scholar]
  20. E. Mussard et al., “Andrographis paniculata and Its Bioactive Diterpenoids Against Inflammation and Oxidative Stress in Keratinocytes,” Antioxidants (Basel), vol. 9, no. 6, Jun 17 2020, doi: 10.3390/antiox9060530. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.