Open Access
Issue
E3S Web Conf.
Volume 610, 2025
2024 Research, Invention, and Innovation Congress (RI2C 2024)
Article Number 01002
Number of page(s) 6
Section Energy Technology
DOI https://doi.org/10.1051/e3sconf/202561001002
Published online 23 January 2025
  1. D. Ji, H. Cai, Z. Ye, D. Luo, G. Wu, and A. Romagnoli, Comparison between thermoelectric generator and organic Rankine cycle for low to medium temperature heat source: A Technoeconomic analysis. Sustain. Energy Technol. Assessment. 55, 102914 (2023). https://doi.org/10.1016/j.seta.2022.102914 [CrossRef] [Google Scholar]
  2. H. Seo, J. E. Cha, J. Kim, I. Sah, and Y.-W. Kim, Design and Performance Analysis of a Supercritical Carbon Dioxide Heat Exchanger. Appl. Sci. 10, 4545 (2020). https://doi.org/10.3390/app10134545 [CrossRef] [Google Scholar]
  3. P. Fernández-Yáñez, V. Romero, O. Armas, and G. Cerretti, Thermal management of thermoelectric generators for waste energy recovery. j.applthermaleng. 196, 117291 (2021). https://doi.org/10.1016/j.applthermaleng.2021.117291 [Google Scholar]
  4. E. Velmre, Thomas Johann Seebeck and his contribution to the modern science and technology, in 2010 12th Biennial Baltic Electronics Conference, IEEE, 17-24(2010). https://doi.org/10.1109/BEC.2010.5631216 [Google Scholar]
  5. L. R. Kramer, A. L. O. Maran, S. S. de Souza, and O. H. Ando Junior, Analytical and Numerical Study for the Determination of a Thermoelectric Generator’s Internal Resistance. Energ. 12, 3053 (2019). https://doi.org/10.3390/en12163053 [Google Scholar]
  6. Z. Wu et al., Heat and electric flux coupling of closed-loop thermoelectric generator. Energy Convers. Manage. 244, 114529 (2021). http://doi.org/10.1016/j.enconman.2021.114529 [CrossRef] [Google Scholar]
  7. O. Ando Junior, N. Calderon, and S. de Souza, Characterization of a Thermoelectric Generator (TEG) System for Waste Heat Recovery. Energ. 11, 1555 (2018). https://doi.org/10.3390/en11061555 [Google Scholar]
  8. I. T. Witting et al., The Thermoelectric Properties of Bismuth Telluride. Adv. Electron. Mater. 5, (2019). https://doi.org/10.1002/aelm.201800904 [CrossRef] [Google Scholar]
  9. S. Lv, M. Liu, W. He, X. Li, W. Gong, and S. Shen, Study of thermal insulation materials influence on the performance of thermoelectric generators by creating a significant effective temperature difference. Energy Convers. Manage. 207, (2020). https://doi.org/10.1016/j.enconman.2020.112516 [Google Scholar]
  10. H.-J. You, H.-S. Chu, W.-J. Li, and W.-L. Lee, Influence of different substrate materials on thermoelectric module with bulk legs. J. Power Sources. 438, 227055 (2019). https://doi.org/10.1016/j.jpowsour.2019.227055 [CrossRef] [Google Scholar]
  11. O. I. Ibeagwu, Modelling and comprehensive analysis of TEGs with diverse variable leg geometry. Energ. 180, 90–106 (2019). https://doi.org/10.1016/j.energy.2019.05.088 [CrossRef] [Google Scholar]
  12. X. Wang et al., Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl. Phys. Lett. 93, 193121 (2008). https://doi.org/10.1063/1.3027060 [CrossRef] [Google Scholar]
  13. G. Joshi et al., Enhanced thermoelectric figure-ofmerit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670–4674 (2008). https://doi.org/10.1021/nl8026795 [CrossRef] [PubMed] [Google Scholar]
  14. N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, and M. Ismail, A comprehensive review of Thermoelectric Generators: Technologies and common applications. j.egyr. 6, 264–287 (2020). https://doi.org/10.1016/j.egyr.2019.12.011 [Google Scholar]
  15. D. Champier, J. P. Bedecarrats, M. Rivaletto, and F. Strub, Thermoelectric power generation from biomass cook stoves. Energ. 35, 935–942 (2010). https://doi.org/10.1016/j.energy.2009.07.015 [CrossRef] [Google Scholar]
  16. T. Sakamoto et al., Selection and Evaluation of Thermal Interface Materials for Reduction of the Thermal Contact Resistance of Thermoelectric Generators. J. Electron. Mater. 43, 3792–3800 (2014). http://doi.org/10.1007/s11664-014-3165-7 [CrossRef] [Google Scholar]
  17. J. Chen et al., Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures. Energ. 10, 1329 (2017). https://doi.org/10.3390/en10091329 [Google Scholar]
  18. S. M. Sze, Y. Li, and K. K. Ng, Physics of semiconductor devices. John wiley & sons, (2021). [Google Scholar]
  19. K. Sornek, M. Filipowicz, and K. Rzepka, The development of a thermoelectric power generator dedicated to stove-fireplaces with heat accumulation systems. Energy Convers. Manage. 125, 185–193 (2016). https://doi.org/10.1016/j.enconman.2016.05.091 [CrossRef] [Google Scholar]
  20. G. F. Rinalde, L. E. Juanicó, E. Taglialavore, S. Gortari, and M. G. Molina, Development of thermoelectric generators for electrification of isolated rural homes. Int. J. Hydrogen Energy. 35, 5818–5822 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.093 [CrossRef] [Google Scholar]
  21. A. Montecucco, J. Siviter, and A. R. Knox, Combined heat and power system for stoves with thermoelectric generators. Appl. Energy. 185, 1336–1342 (2017). https://doi.org/10.1016/j.apenergy.2015.10.132 [CrossRef] [Google Scholar]
  22. A. Montecucco, J. Siviter, and A. R. Knox, A Combined Heat and Power System for Solid-fuel Stoves Using Thermoelectric Generators. Energy Procedia. 75, 597–602 (2015). https://doi.org/10.1016/j.egypro.2015.07.462 [CrossRef] [Google Scholar]
  23. G.-n. Li, S. Zhang, Y.-q. Zheng, L.-y. Zhu, and W.-w. Guo, Experimental study on a stove-powered thermoelectric generator (STEG) with self starting fan cooling. j.renene. 121, 502–512 (2018). https://doi.org/10.1016/j.renene.2018.01.075 [Google Scholar]
  24. G. Li, Y. Zheng, J. Hu, and W. Guo, Experiments and a simplified theoretical model for a watercooled, stove-powered thermoelectric generator. Energ. 185, 437–448 (2019). https://doi.org/10.1016/j.energy.2019.07.023 [CrossRef] [Google Scholar]
  25. D. Champier, J. P. Bédécarrats, T. Kousksou, M. Rivaletto, F. Strub, and P. Pignolet, Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energ. 36, 1518–1526, (2011). https://doi.org/10.1016/j.energy.2011.01.012 [CrossRef] [Google Scholar]
  26. M. Araiz, Á. Casi, L. Catalán, Á. Martínez, and D. Astrain, Prospects of waste-heat recovery from a real industry using thermoelectric generators: Economic and power output analysis. Energy Convers. Manage. 205, 112376 (2020). https://doi.org/10.1016/j.enconman.2019.112376 [CrossRef] [Google Scholar]
  27. T. Witting, F. Ricci, T. Chasapis, G. Hautier, G. J. Snyder, unpublished. [Google Scholar]
  28. K. Wu, L. Huang, C. Y. Wu, and G. Yu, Effects of scattering mechanisms on thermoelectric properties of bismuth. Solid State Commun. 390, 115471 (2024). https://doi.org/10.1016/j.ssc.2024.115471 [CrossRef] [Google Scholar]
  29. R. P. Chasmar and R. Stratton, The Thermoelectric Figure of Merit and its Relation to Thermoelectric Generators. Journal of electronics and control. 7, 52–72 (2007). https://doi.org/10.1080/00207215908937186 [Google Scholar]
  30. Y. Qin, Y. Xiao and L. D. Zhao, Carrier mobility does matter for enhancing thermoelectric performance. APL Mater. 8, 010901 (2020). https://doi.org/10.1063/1.5144097 [CrossRef] [Google Scholar]
  31. Md. G. Rosul, M. Zebarjadi, Effect of ElectronPhonon Interaction and Ionized Impurity Scattering on the Room Temperature Thermoelectric Properties of Bulk MoSe2. J. Phys. Chem. C. 126, 15011–15018 (2022). https://doi.org/10.1021/acs.jpcc.2c03782 [CrossRef] [Google Scholar]
  32. L. Pan, S. Mitra, L. Zhao, Y. Shen, Y. Wang, C. Felser and D. Berardan, The Role of Ionized Impurity Scattering on the Thermoelectric Performances of Rock Salt AgPbmSnSe2+m. Adv. Funct. Mater. 26, 5149–5157 (2016). https://doi.org/10.1002/adfm.201600623 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.