Open Access
Issue
E3S Web Conf.
Volume 610, 2025
2024 Research, Invention, and Innovation Congress (RI2C 2024)
Article Number 01001
Number of page(s) 7
Section Energy Technology
DOI https://doi.org/10.1051/e3sconf/202561001001
Published online 23 January 2025
  1. S. A. Solarin, An environmental impact assessment of fossil fuel subsidies in emerging and developing economies. Environmental Impact Assessment Review, 85, 106443 (2020) [CrossRef] [Google Scholar]
  2. M. Zastempowski, Analysis and modeling of innovation factors to replace fossil fuels with renewable energy sources-Evidence from European Union enterprises. Renewable and Sustainable Energy Reviews, 178, 113262 (2023) [CrossRef] [Google Scholar]
  3. J. Wang, W. Azam, Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries. Geoscience Frontiers, 15(2), 101757 (2024). [CrossRef] [Google Scholar]
  4. Statista, Renewable energy market size worldwide in 2021 with a forecast for 2022 to 2030 https://www.statista.com/statistics/1094309/ [Google Scholar]
  5. International Energy Agency (IEA), Global hydrogen demand by sector in the Sustainable Development Scenario, 2019-2070, IEA, Paris https://www.iea.org/ [Google Scholar]
  6. D. Jang, J. Kim, D. Kim, W. B. Han, S. Kang, Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Conversion and Management, 258, 115499 (2022) [CrossRef] [Google Scholar]
  7. T. Terlouw, C. Bauer, R. McKenna, M. Mazzotti, Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy & Environmental Science, 15(9), 3583–3602, (2022) [CrossRef] [Google Scholar]
  8. H. Liu, J. Ma, A review of models and methods for hydrogen supply chain system planning. CSEE Journal of Power and Energy Systems (2020) doi: 10.17775/CSEEJPES.2020.02280. [Google Scholar]
  9. K. Ransikarbum, W. Chanthakhot, T. Glimm, J. Janmontree, Evaluation of sourcing decision for hydrogen supply chain using an integrated multicriteria decision analysis (MCDA) tool. Resources, 12(4), 48, (2023) [CrossRef] [Google Scholar]
  10. J. A. Riera, R. M. Lima, O. M. Knio, A review of hydrogen production and supply chain modeling and optimization. International Journal of Hydrogen Energy, (2023) [Google Scholar]
  11. L. Eicke, N. De Blasio, Green hydrogen value chains in the industrial sector—Geopolitical and market implications. Energy research & social science, 93, 102847, (2022) [CrossRef] [Google Scholar]
  12. K. Gyanwali, A. Bhattarai, T. R. Bajracharya, R. Komiyama, Y. Fujii, Assessing green energy growth in Nepal with a hydropower-hydrogen integrated power grid model. International journal of hydrogen energy, 47(34), 15133–15148, (2022) [CrossRef] [Google Scholar]
  13. Q. Hassan, S. Algburi, A. Z. Sameen, H. M. Salman, M. Jaszczur, Green hydrogen: A pathway to a sustainable energy future. International Journal of Hydrogen Energy, 50, 310–333, (2024) [CrossRef] [Google Scholar]
  14. I. Otay, S. Ç. Onar, B. Öztayşi, C. Kahraman, Evaluation of sustainable energy systems in smart cities using a Multi-Expert Pythagorean fuzzy BWM & TOPSIS methodology. Expert Systems with Applications, 250, 123874, (2024). [CrossRef] [Google Scholar]
  15. X. Zhou, W. Tan, Y. Sun, T. Huang, C. Yang, Multi-objective optimization and decision making for integrated energy system using STA and fuzzy TOPSIS. Expert Systems with Applications, 240, 122539 (2024). [CrossRef] [Google Scholar]
  16. M. Alghassab, Quantitative assessment of sustainable renewable energy through soft computing: Fuzzy AHP-TOPSIS method. Energy Reports, 8, 12139–12152, (2022) [CrossRef] [Google Scholar]
  17. K. Hasan, S. B. Yousuf, M. S. H. K. Tushar, B. K. Das, P. Das, M. S. Islam, Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Science & Engineering, 10(2), 656–675, (2022) [CrossRef] [Google Scholar]
  18. S. E. Hosseini, M. A. Wahid, Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy. International Journal of Energy Research, 44(6), 4110–4131, (2020) [CrossRef] [Google Scholar]
  19. P. Sadorsky, Wind energy for sustainable development: Driving factors and future outlook. Journal of Cleaner Production, 289, 125779, (2021) [CrossRef] [Google Scholar]
  20. P. Enevoldsen, M. Z. Jacobson, Data investigation of installed and output power densities of onshore and offshore wind turbines worldwide. Energy for Sustainable Development, 60, 40–51, (2021) [CrossRef] [Google Scholar]
  21. ESMAP (2019). Global Solar Atlas 2.0: Technical Report. Washington, DC: World Bank. [Google Scholar]
  22. ESMAP (2019). “Renewable Energy Resource Assessment & Mapping”. World Bank. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.