Open Access
Issue
E3S Web Conf.
Volume 610, 2025
2024 Research, Invention, and Innovation Congress (RI2C 2024)
Article Number 04001
Number of page(s) 8
Section Environmental Technology
DOI https://doi.org/10.1051/e3sconf/202561004001
Published online 23 January 2025
  1. P. F. Hsieh and T. Y. Wen, “Evaluation of Ozone Removal by Spent Coffee Grounds,” Sci Rep, vol. 10, no. 1, p. 124, Jan 10 2020, doi: 10.1038/s41598-019-56668-5. [CrossRef] [PubMed] [Google Scholar]
  2. W. H. Organization. “Review of evidence on health aspects of air pollution–REVIHAAP Project.” WHO. https://www.who.int/europe/publications/i/item/WHO-EURO-2013-4101-43860-61757 (accessed 16 April 2024). [Google Scholar]
  3. E. P. Agency. “Ground-level Ozone Basics.” EPA. https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics#wwh (accessed 16 April 2024. [Google Scholar]
  4. A. Yehia, “Optimum operating conditions for the ozone generation in the dielectric barrier discharges,” International Journal of Plasma Environmental Science and Technology, vol. 15, pp. 3007–3022, 12/29 2021, doi: 10.34343/ijpest.2021.15.e03007. [Google Scholar]
  5. A. M. Gorito et al., “Ozone-based water treatment (O3, O3/UV, O3/H2O2) for removal of organic micropollutants, bacteria inactivation and regrowth prevention,” Journal of Environmental Chemical Engineering, vol. 9, no. 4, 2021, doi: 10.1016/j.jece.2021.105315. [CrossRef] [Google Scholar]
  6. W. Xue, J. Macleod, and J. Blaxland, “The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology,” Foods, vol. 12, no. 4, Feb 14 2023, doi: 10.3390/foods12040814. [Google Scholar]
  7. L. H. Tu et al., “Study of ozone disinfection in the hospital environment,” Vietnam Journal of Chemistry, vol. 58, no. 4, pp. 565–568, 2020, doi: 10.1002/vjch.202000042. [CrossRef] [Google Scholar]
  8. S.-L. Park, J.-D. Moon, S.-H. Lee, and S.-Y. Shin, “Effective ozone generation utilizing a meshed-plate electrode in a dielectric-barrier discharge type ozone generator,” Journal of Electrostatics, vol. 64, no. 5, pp. 275–282, 2006, doi: 10.1016/j.elstat.2005.06.007. [CrossRef] [Google Scholar]
  9. F. Murdiya and E. Hardiwika, “The Characteristics of Five Ceramics and Two Granites as Solid Dielectrics for An Ozone Generator: The Characteristics of Five Ceramics and Two Granites as Solid Dielectrics for An Ozone Generator,” International Journal of Electrical, Energy and Power System Engineering, vol. 3, no. 2, pp. 53–56, 06/07 2020, doi: 10.31258/ijeepse.3.2.53-56. [CrossRef] [Google Scholar]
  10. A. Rahardian, M. Masfufah, S. Maftuhah, E. Yulianto, S. Sumariyah, and M. Nur, “Effective medical ozone production using mesh electrodes in double dielectric barrier type plasma generators,” presented at the Proceedings of 2nd International Conference on Chemical Process and Product Engineering (Iccppe) 2019, 2020. [Google Scholar]
  11. S. Jodzis and M. Zięba, “Energy efficiency of an ozone generation process in oxygen. Analysis of a pulsed DBD system,” Vacuum, vol. 155, pp. 2937, 2018, doi: 10.1016/j.vacuum.2018.05.035. [CrossRef] [Google Scholar]
  12. L. Wei, H. Deng, G. Neretti, and Y. Zhang, “Ozone yield limit in low temperature plasmas based on thermodynamics,” The European Physical Journal D, vol. 73, no. 7, 2019, doi: 10.1140/epjd/e2019-90560-y. [Google Scholar]
  13. C. Miao, F. Liu, Q. Wang, M. Cai, and Z. Fang, “Investigation on the influence of electrode geometry on characteristics of coaxial dielectric barrier discharge reactor driven by an oscillating microsecond pulsed power supply,” The European Physical Journal D, vol. 72, no. 3, 2018, doi: 10.1140/epjd/e2018-80575-3. [CrossRef] [Google Scholar]
  14. E. Gnapowski, S. Gnapowski, and J. Pytka, “The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes,” Plasma Science and Technology, vol. 20, no. 8, 2018, doi: 10.1088/2058-6272/aac1b6. [Google Scholar]
  15. D. Yuan et al., “The Benefits of Small Quantities of Nitrogen in the Oxygen Feed to Ozone Generators,” Ozone: Science & Engineering, vol. 40, no. 4, pp. 313–320, 2018, doi: 10.1080/01919512.2018.1427553. [CrossRef] [Google Scholar]
  16. D. Yuan, Z. Wang, C. Ding, Y. He, R. Whiddon, and K. Cen, “Ozone production in parallel multichannel dielectric barrier discharge from oxygen and air: the influence of gas pressure,” Journal of Physics D: Applied Physics, vol. 49, no. 45, 2016, doi: 10.1088/00223727/49/45/455203. [CrossRef] [Google Scholar]
  17. M. Tański, A. Reza, D. Przytuła, and K. Garasz, “Ozone Generation by Surface Dielectric Barrier Discharge,” Applied Sciences, vol. 13, no. 12, 2023, doi: 10.3390/app13127001. [Google Scholar]
  18. T. L. Sung et al., “Effect of pulse power characteristics and gas flow rate on ozone production in a cylindrical dielectric barrier discharge ozonizer,” Vacuum, vol. 90, pp. 65–69, 2013, doi: 10.1016/j.vacuum.2012.10.003. [CrossRef] [Google Scholar]
  19. X. Zhang, B. J. Lee, H. G. Im, and M. S. Cha, “Ozone Production With Dielectric Barrier Discharge: Effects of Power Source and Humidity,” IEEE Transactions on Plasma Science, vol. 44, no. 10, pp. 2288–2296, 2016, doi: 10.1109/tps.2016.2601246. [CrossRef] [Google Scholar]
  20. M. Restiwijaya et al., “New development of double dielectric barrier discharge (DBD) plasma reactor for medical,” Journal of Physics: Conference Series, vol. 1170, no. 1, p. 012020, 2019/03/01 2019, doi: 10.1088/1742-6596/1170/1/012020. [CrossRef] [Google Scholar]
  21. E. Yulianto, M. Restiwijaya, E. Sasmita, F. Arianto, A. W. Kinandana, and M. Nur, “Power analysis of ozone generator for high capacity production,” Journal of Physics: Conference Series, vol. 1170, no. 1, p. 012013, 2019/03/01 2019, doi: 10.1088/1742-6596/1170/1/012013. [CrossRef] [Google Scholar]
  22. S. Svanberg, Atomic and Molecular Spectroscopy, 1 ed. (Springer Series on Atomic, Optical, and Plasma Physics). Springer Berlin, Heidelberg, 1991, pp. XI, 405. [Google Scholar]
  23. I. Jõgi, E. Levoll, and J. Raud, “Plasma oxidation of NO in O 2 :N 2 mixtures: The importance of back-reaction,” Chemical Engineering Journal, vol. 301, pp. 149–157, 2016, doi: 10.1016/j.cej.2016.04.057. [CrossRef] [Google Scholar]
  24. Paulauskas et al., “Application of Non-Thermal Plasma for NOx Reduction in the Flue Gases,” Energies, vol. 12, no. 20, 2019, doi: 10.3390/en12203955. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.