Open Access
Issue
E3S Web Conf.
Volume 610, 2025
2024 Research, Invention, and Innovation Congress (RI2C 2024)
Article Number 03003
Number of page(s) 6
Section Agricultural Sustainability
DOI https://doi.org/10.1051/e3sconf/202561003003
Published online 23 January 2025
  1. A. Ahmad, M. Zoli, C. Latella, J. Bacenetti, Rice cultivation and processing: Highlights from a life cycle thinking perspective. Sci Total Environ. 871, 162079 (2023). https://doi.org/10.1016/j.scitotenv.2023.162079 [CrossRef] [PubMed] [Google Scholar]
  2. N. Chairerk, P. Pongyeela, J. Chungsiriporn, N. Rakmak, Ethanol extraction of active ingredients and antioxidants from germinated sangyod rice. Appl. Sci. Eng. Prog. 14, 1 (2021) http://ojs.kmutnb.ac.th/index.php/ijst/article/view/2064/pdf_208 [Google Scholar]
  3. M. SaberiKamarposhti, KW. Ng, M. Yadollahi, H. Kamyab, J. Cheng, M. Khorami, Cultivating a sustainable future in the artificial intelligence era: A comprehensive assessment of greenhouse gas emissions and removals in agriculture. Environ Res. 250, 118528 (2024) https://doi.org/10.1016/j.envres.2024.118528 [CrossRef] [PubMed] [Google Scholar]
  4. M. Filonchyk, MP. Peterson, L. Zhang, Hurynovich V, Y. He. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci Total Environ. 935, 173359 (2024) https://doi.org/10.1016/j.scitotenv.2024.173359 [CrossRef] [PubMed] [Google Scholar]
  5. Y. Singh, S. Sharma, U. Kumar, P. Sihag, P. Balyan, KP. Singh, OP. Dhankher, Strategies for economic utilization of rice straw residues into value-added by-products and prevention of environmental pollution. Sci Total Environ. 906, 167714 (2024) https://doi.org/10.1016/j.scitotenv.2023.167714 [CrossRef] [PubMed] [Google Scholar]
  6. T. Phusantisampan, N. Kitiborwornkul, Progress in chemical pretreatment of lignocellulose biomass for applications in biorefinery. The Journal of KMUTNB. 32, 4 (2022) https://doi.org/10.14416/j.kmutnb.2022.09.018 [CrossRef] [Google Scholar]
  7. M. Abbas, MP. Gundupalli, S. Asavasanti, Opportunity of biorefinery industry toward circular economy: Bio-composites case study. J The Journal of KMUTNB. 35, 1 (2025) https://doi.org/10.14416/j.kmutnb.2023.05.008 [Google Scholar]
  8. SN. Harun, MM. Hanafiah, NM. Noor, Rice straw utilization for bioenergy production: A brief overview. Energies. 15, 5 (2022) https://doi.org/10.3390/en15155542 [Google Scholar]
  9. M. Sriariyanun1, B. Dharmalingam, From waste to wealth: Challenges in producing value-added biochemicals from lignocellulose biorefinery. 22, 3 (2023) https://doi.org/10.14416/JASET.KMUTNB.2023.03.001 [Google Scholar]
  10. W. Pongprayoon, M. Sanyapeung, N. Kitiborwornkul, M. Sriariyanun. The impact of rice cultivation on greenhouse gas emissions and mitigation strategies. The Journal of KMUTNB. 34, 3 (2024) http://ojs.kmutnb.ac.th/index.php/kjournal/article/view/7385/4994 [CrossRef] [Google Scholar]
  11. MA. Nawaz, AM. Zakharenko, IV. Zemchenko, MS. Haider, MA. Ali, M. Imtiaz, G. Chung, A. Tsatsakis, S. Sun, KS. Golokhvast, Phytolith formation in plants: From soil to cell. Plants (Basel). 8, 249 (2019) https://doi.org/10.3390/plants8080249 [PubMed] [Google Scholar]
  12. R. Xu, J. Huang, H. Guo, C. Wang, H. Zhan, Functions of silicon and phytolith in higher plants. Plant Signal Behav. 18, 2198848 (2023) https://doi.org/10.1080/15592324.2023.2198848 [CrossRef] [PubMed] [Google Scholar]
  13. W. Pan, HJ. Zhang, YF. Zhang, M. Wang, MT. Tsui, L. Yang, AJ. Miao, Silica nanoparticle accumulation in plants: current state and future perspectives. Nanoscale. 15, 15079–15091 (2023) https://doi.org/10.1039/D3NR02221H [CrossRef] [PubMed] [Google Scholar]
  14. P. Swoboda, TF. Döring, M. Hamer, Remineralizing soils? The agricultural usage of silicate rock powders: A review. Sci Total Environ. 10, 150976 (2022) https://doi.org/10.1016/j.scitotenv.2021.150976 [CrossRef] [PubMed] [Google Scholar]
  15. M. Anjum, NB. Prakash, Production of phytolith and PhytOC and distribution of extractable Si Pools in aerobic rice as influenced by different Si sources. Front Plant Sci. 14, 1146416 (2023) https://doi.org/10.3389/fpls.2023.1146416 [CrossRef] [PubMed] [Google Scholar]
  16. X. Yang, Y. Ni, Z. Li, K. Yue, J. Wang, Z. Li, X. Yang, Z. Song, Silicon in paddy fields: Benefits for rice production and the potential of rice phytoliths for biogeochemical carbon sequestration. Sci Total Environ. 929, 172497 (2024) https://doi.org/10.1016/j.scitotenv.2024.172497 [CrossRef] [PubMed] [Google Scholar]
  17. PE. Dim, M. Termtanun, Treated clay mineral as adsorbent for the removal of heavy metals from aqueous solution. Appl. Sci. Eng. Prog. 14, 3 (2021) http://ojs.kmutnb.ac.th/index.php/ijst/article/view/4535/pdf_307 [Google Scholar]
  18. P. Tobarameekul, S. Sangsuradet, N. Na Chat, P. Worathanakul, Enhancement of CO2 adsorption containing zinc-ion-exchanged zeolite NaA synthesized from rice husk ash. Appl. Sci. Eng. Prog. 15, 1 (2022) http://ojs.kmutnb.ac.th/index.php/ijst/article/view/3640/pdf_282 [Google Scholar]
  19. N. Eroglu, M. Emekci, CG. Athanassiou, Applications of natural zeolites on agriculture and food production. J Sci Food Agric. 97, 3487–3499 (2017) https://doi.org/10.1002/jsfa.8312 [CrossRef] [PubMed] [Google Scholar]
  20. M. Noviello, CE. Gattullo, M. Faccia, VM. Paradiso, G. Gambacorta, Application of natural and synthetic zeolites in the oenological field. Food Res Int. 150, 110737 (2021) https://doi.org/10.1016/j.foodres.2021.110737 [CrossRef] [PubMed] [Google Scholar]
  21. J. Mecfel, S. Hinke, WA. Goedel, G. Marx, R. Fehlhaber, E. Bäucker, O. Wienhaus, Effect of silicon fertilizers on silicon accumulation in wheat. J Plant Nutr Soil Sc. 170, 769–772 (2007) https://onlinelibrary.wiley.com/doi/10.1002/jpln.200625038 [CrossRef] [Google Scholar]
  22. AA. Al-Hemiri, Y. Jawad, Differences between sodium metasilicate and silicic acid as silica source for zeolite Y nano particles synthesis by solgel method. Iraqi J. chem. pet. eng. 10, 4 (2009) https://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/416 [Google Scholar]
  23. N. Zexer, S. Kumar, R. Elbaum. Silica deposition in plants: scaffolding the mineralization. Ann Bot. 131, 6 (2023) https://doi.org/10.1093/aob/mcad056 [Google Scholar]
  24. E. Durgut, M. Cinar, M. Terzi, KI Unver, Y. Yildirim, O. Ozdemir Evaluation of Different Dispersants on the Dispersion/Sedimentation Behavior of Halloysite, Kaolinite, and Quartz Suspensions in the Enrichment of Halloysite Ore by Mechanical Dispersion. Minerals. 12, 1426 (2022) https://doi.org/10.3390/min12111426 [CrossRef] [Google Scholar]
  25. Z. Li, JT. Cornelis, CV. Linden, EV. Ranst, B. Delvaux. Neoformed aluminosilicate and phytogenic silica are competitive sinks in the silicon soil–plant cycle. Geoderma. 368, 114308 (2020) https://www.sciencedirect.com/science/article/pii/S0016706120300343 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.