Open Access
Issue
E3S Web Conf.
Volume 612, 2025
5th Asia Environment and Resource Engineering Conference (AERE 2024)
Article Number 01002
Number of page(s) 10
Section Renewable Energy Generation and Emissions Analysis of Clean Energy Combustion
DOI https://doi.org/10.1051/e3sconf/202561201002
Published online 31 January 2025
  1. Raihan, A.: A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and environmental sectors. Journal of Environmental Science and Economics. 2, 36–58 (2023). [CrossRef] [Google Scholar]
  2. Abbasi, K.R., Shahbaz, M., Zhang, J., Irfan, M., Alvarado, R.: Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy. Renew Energy. 187, 390–402 (2022). [CrossRef] [Google Scholar]
  3. Cucchiella, F., Rotilio, M., Capannolo, L., De Berardinis, P.: Technical, economic and environmental assessment towards the sustainable goals of photovoltaic systems. Renewable and Sustainable Energy Reviews. 188, 113879 (2023). [CrossRef] [Google Scholar]
  4. Cucchiella, F., Rotilio, M., Barile, G., De Berardinis, P., Leoni, A., Ragnoli, M., Scarsella, M., Stornelli, V.: Renovation Wave: a bioeconomy panel produced with waste. J Clean Prod. 142868 (2024). [CrossRef] [Google Scholar]
  5. Krein, P.T., Galtieri, J.A.: Active management of photovoltaic system variability with power electronics. IEEE J Emerg Sel Top Power Electron. 9, 6507–6523 (2020). [Google Scholar]
  6. Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R.: Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information fusion. 58, 82–115 (2020). [CrossRef] [Google Scholar]
  7. Qu, Y., Xu, J., Sun, Y., Liu, D.: A temporal distributed hybrid deep learning model for dayahead distributed PV power forecasting. Appl Energy. 304, 117704 (2021). [CrossRef] [Google Scholar]
  8. Önal, Y.: Gaussian kernel based SVR model for short-term photovoltaic MPP power prediction. Computer Systems Science and Engineering. 41, (2022). [Google Scholar]
  9. Di Giovanni, G., Rotilio, M., Giusti, L., Ehtsham, M.: Exploiting building information modeling and machine learning for optimizing rooftop photovoltaic systems. Energy Build. 313, 114250 (2024). [CrossRef] [Google Scholar]
  10. Probst, P., Boulesteix, A.-L., Bischl, B.: Tunability: Importance of hyperparameters of machine learning algorithms. Journal of Machine Learning Research. 20, 1–32 (2019). [Google Scholar]
  11. Weerts, H.J.P., Mueller, A.C., Vanschoren, J.: Importance of tuning hyperparameters of machine learning algorithms. arXiv preprint arXiv:2007.07588. (2020). [Google Scholar]
  12. Hossain, M.R., Timmer, D.: Machine learning model optimization with hyper parameter tuning approach. Global Journal of Computer Science and Technology. 21, 7–13 (2021). [Google Scholar]
  13. Karl, F., Pielok, T., Moosbauer, J., Pfisterer, F., Coors, S., Binder, M., Schneider, L., Thomas, J., Richter, J., Lang, M.: Multi-Objective Hyperparameter Optimization in Machine Learning— An Overview. ACM Transactions on Evolutionary Learning and Optimization. 3, 1–50 (2023). [CrossRef] [Google Scholar]
  14. Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A.: Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdiscip Rev Data Min Knowl Discov. 13, e1484 (2023). [CrossRef] [Google Scholar]
  15. Luo, G.: A review of automatic selection methods for machine learning algorithms and hyperparameter values. Network Modeling Analysis in Health Informatics and Bioinformatics. 5, 1–16 (2016). [CrossRef] [Google Scholar]
  16. Ridd, P., Giraud-Carrier, C.G.: Using Metalearning to Predict When Parameter Optimization Is Likely to Improve Classification Accuracy. In: MetaSel@ ECAI. pp. 18–23 (2014). [Google Scholar]
  17. Hoque, K.E., Aljamaan, H.: Impact of hyperparameter tuning on machine learning models in stock price forecasting. IEEE Access. 9, 163815–163830 (2021). [Google Scholar]
  18. Abreu, S.: Automated architecture design for deep neural networks. arXiv preprint arXiv:1908.10714. (2019). [Google Scholar]
  19. Yang, L., Shami, A.: On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing. 415, 295–316 (2020). [CrossRef] [Google Scholar]
  20. NASA, “Power Data Access Viewer: Prediction of Worldwide Energy Resource.” [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/. [Accessed: Aug. 02, 2024]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.