Open Access
Issue |
E3S Web Conf.
Volume 612, 2025
5th Asia Environment and Resource Engineering Conference (AERE 2024)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 10 | |
Section | Renewable Energy Generation and Emissions Analysis of Clean Energy Combustion | |
DOI | https://doi.org/10.1051/e3sconf/202561201003 | |
Published online | 31 January 2025 |
- Chingarande D, Mugano G, Chagwiza G, Hungwe M. Zimbabwe market study: Manicaland province report. Washington. DC: USAID, Research Technical Assistance Center; 2020. p. 1–54. [Google Scholar]
- Gratitude C, Gwiranai D, Muzenda E. A review of timber waste utilization: Challenges and opportunities in Zimbabwe. Procedia Manuf. 2019;35:419–29. doi: 10.1016/j.promfg.2019.07.005. [CrossRef] [Google Scholar]
- Acevedo SA, Carrilo AJ, Florez-Lopez E, Rande-Tovar CD. Recovery of banana waste-loss from production and processing: A contribution to a circular economy. Molecules. 2021;26(5282). doi: 10.3390/molecules26175282. [Google Scholar]
- Wihersaari M. Evaluation of greenhouse gas emission risks from storage of wood residue. Biomass and Bioenergy. 2005;28:444–53. doi: 10.1016/j.biombioe.2004.11.011. [CrossRef] [Google Scholar]
- Foster WA, Walker ED. Mosquitoes ( Culicidae ). Medical and Veterinary Entomology. 2019; 261–325 p. Available from: http://dx.doi.org/10.1016/B978-0-12-814043-7.00015-7 [CrossRef] [Google Scholar]
- Tomtoka K, Kumagai S, Kameda M, Kataoka Y. A case of occupational Asthma induced by Falcata wood (Albizia falcataria). J Occup Health. 2006;48:392–5. [CrossRef] [PubMed] [Google Scholar]
- Krigstin S, Wetzel S, Jayabala N, Helmeste C, Madrali S, Agnew J, et al. Recent health and safety incident trends relatted to the storage of woody biomass: A need for improved monitoring strategies. Forests. 2018;9(538):1–24. [Google Scholar]
- Gwenzi W, Ncube RS, Tungamiraii R. Development, properties and potential applicatiions of high-energy fuel briquettes incorporating coal dust, biowastes and postconsumer plastics. SN Appl Sci. 2020;1(1006):1–14. doi: 10.1007/s42452-020-2799-8. [Google Scholar]
- Yang I, Cooke-Willis M, Song B, Hall P. Densification of torrefied Pinus radiata sawdust as a solid biofuel: Effect of key variables on the durability and hydrophobicity of briquettes. Fuel Process Technol. 2021;214(106719). doi: 10.1016/j.fuproc.2020.106719. [CrossRef] [Google Scholar]
- Mamvura T, Danha G. Biomass torrefaction as an emerging technology to aid in energy production. Heliyon. 2020;6(e03531):1–17. doi: 10.1016/j.helyon.2020.e03531. [Google Scholar]
- Srivastava NS, Narnaware S, Makwana J, Singh J, Vahora S. Investigating the energy use of vegetable market waste by briquetting. Renew Energy. 2014;68:270–5. doi: 10.1016/j.renne.2014.01.047. [CrossRef] [Google Scholar]
- Patil DP, Taulbee D, Parekh BK, Honaker R. Briquetting of coal fines and sawdust Effect of particle size distribution. Int J Coal Prep Util. 2009;29(5):251–64. doi: 10.1080/19392690903294423. [CrossRef] [Google Scholar]
- Nino A, Arzola N, Araque O. Experimental study on the mechanical properties of biomass briquettes from a mixture of rice husk and pine sawdust. Energies. 2020;13(1060):1–19. [Google Scholar]
- Tavares MHF, da Silva EA, de Oliveira RS, Bittencourt PRS, Damaceno FM, do Nascimento CT. Briquette production from a mixture of biomass: poultry slaughterhouse sludge and sawdust. Environ Sci Pollut Res. 2022;1–13. doi: 10.1007/s11356-022-20218-w. [Google Scholar]
- Zhang G, Sun Y, Ying X. Review of briquette binders and briquetting mechanism. Renew Sustain Energy Rev. 2018;82:477–87. doi: 10.1016/j.rser.2017.09.072. [CrossRef] [Google Scholar]
- Obi OF, Pecenka R, Clifford MJ. A Review of Biomass Briquette Binders and Quality Parameters. Energies. 2022;15(2426):1–22. doi: 10.3390/en15072426. [Google Scholar]
- Carnaje NP, Talagon RB, Peralta JP, Shah K, Paz-Ferreiro J. Development and characterisation of charcoal briquettes from water hyacinth (Eichhornia crassipes)-molasses blend. PLoS One. 2018;13(11):1–14. doi: 10.1371/journal.pone.0207135. [Google Scholar]
- Arewa ME, Daniel IC, Kuye A. Characterisation and comparison of rice husk briquettes with cassava peels and cassava starch as binders. Biofuels. 2016;7(6):671–5. doi: 10.1080/17597269.2016.1187541. [CrossRef] [Google Scholar]
- Zanella K, Goncalves JL, Taranto OP. Charcoal briquette production using orange bagasse and corn starch. Chem Eng Trans. 2016;49:313–8. doi: 10.3303/CET16449053. [Google Scholar]
- de Oliveira Maia B, de Oliveira APN, de Oliveira TM.N, Marangoni C, Souza O, Sellin N. Characterization and production of banana crop and rice processing waste briquettes. Environ Prog Sustain Energy. 2018;37(4):1266–73. doi: 10.1002/ep.12798. [CrossRef] [Google Scholar]
- Lindrose N, Gratitude C, Chigondo M, Maposa M, Nyadenga D, Nyenyayi K. Fabrication of sawdust briquettes using local banana pulp as a binder. Multidiscip J Waste Resour Residues. 2022;19:84–93. doi: 10.31025/2611-4135/2022.15193. [Google Scholar]
- ASTM International. ASTM D2444-16. Standard test. Methods for direct moisture content measurement of wood and wood based materials; West Conshohocken, PA, USA: ASTM International; 2017. [Google Scholar]
- ASTM International. ASTM D3175-18. Standard Test. Method for Volatile Matter in the analysis sample of coal and coke. West Conshohocken, PA, USA: ASTM International; 2018. [Google Scholar]
- Ikelle II, Ivoms OSP. Determination of the heating ability of coal and corn cob briquettes. IOSR J Appl Chem. 2014;7(2):77–82. [CrossRef] [Google Scholar]
- ASTM International. ASTM D2395-17. Methods for density and specific ravity (Relative Density) of wood and wood based materials. West Conshohocken, PA, USA: ASTM International; 2017. [Google Scholar]
- ASTM International. ASTM D5865-13. Standard Test. Method for Gross Calorific value of coal and coke. West Conshohocken, PA, USA: ASTM International; 2012. [Google Scholar]
- Babinszki B., Sebestyén Z., Jakab E., Kőhalmi L., Bozi J., Várhegyi G., Wang L., Skreiberg Ø., Czégény Zs., Effect of slow pyrolysis conditions on biocarbon yield and properties: Characterization of the volatiles, Bioresource Technology, Volume 338, 2021, 125567, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2021.125567. [CrossRef] [PubMed] [Google Scholar]
- Nalladurai K, Morey VR. Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy. 2009;33:337–59. doi: 10.1016/j.biome.2008.08.005. [CrossRef] [Google Scholar]
- Protasio T de P, Alves de Melo ICN, Junior MG, Mendes RF, Trugilho PF. Thermal decomposition of torrefied and carbonised briquettes of residues from coffee grain processing. 2013;37(3):221–8. [Google Scholar]
- Richards S. Physical testing of fuel briquettes. Fuel Process Technol. 1990;25:89–100. [CrossRef] [Google Scholar]
- Akalin M, Horrocks AR, Price D. Smoke and CO evolution from cotton and flame retarded cotton. Part 1: Behaviour of single layer fabrics under LOI conditions. J fire Sci. 1988;6:333–47. [Google Scholar]
- Marks J. Wood powder. an upgraded wood fuel. For Prod J. 1992;42(9):52–6. [Google Scholar]
- Rotich, P. K. (1999). Carbonization and briquetting of sawdust for use in domestic cookers. University of Nairobi. http://erepository.uonbi.ac.ke:8080/xmlui/handle/123456789/21571. [Google Scholar]
- Zubairu, A., & Gana, S. A. (2014). Production and characterization of briquette charcoal by carbonization of agro-waste. Energy Power, 4(2), 41–47. https://doi.org/10.5923/j.ep.20140402.03. [Google Scholar]
- Ofori, P. & Akoto, O. (2020). Production and characterisation of briquettes from carbonised cocoa pod husk and sawdust. Open Access Library Journal, 7(02), 1. https://doi.org/10.4236/oalib.1106029. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.