Open Access
Issue |
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 14 | |
Section | Renewable Energy | |
DOI | https://doi.org/10.1051/e3sconf/202561601013 | |
Published online | 24 February 2025 |
- United States Environmental Protection Agency, Global Greenhouse Gas Emission Data. https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data, 3 February 2021. [Google Scholar]
- Askari, Mohammad Bagher, Mirzaei Mahmoud Abadi Vahid, Mirhabibi Mohsen. Types of Solar Cells and Application, American Journal of Optics and Photonics, vol. 3, no. 5, pp. 94–113, DOI: 10.11648/j.ajop.20150305. 17 October (2015) [CrossRef] [Google Scholar]
- Gul, M., Review on recent trend of solar photovoltaic technology, SAGE, 492, (2016). [Google Scholar]
- Placzek-Popko, E., Top PV market solar cells 2016, Opto-Electronics Review, vol. 25, no. 2, pp. 55–64, ISSN 1230-3402, https://doi.org/10.1016/j.opelre.2017.03.002, (2017) [CrossRef] [Google Scholar]
- A.V. Shah Thin-film Silicon Solar Cell technology, John Wiley and Sons, 1–2, (2004). [Google Scholar]
- Y. Aoki Photovoltaic performance of Organic Photovoltaics for indoor energy harvester, Organic Electronics, 48, 194–197, (2017). [CrossRef] [Google Scholar]
- A. Bahrami, F. Rahim Simulation analysis of inverted organic solar cells with grating structure: Undesirable effects of high absorption near grating anode, Optik - International Journal for Light and Electron Optics, 154. 10.1016/j.ijleo.2017.10.118, (2017). [Google Scholar]
- L. Xu, C.L. Ho, L. Liu, W.Y. Wong, Molecular/polymeric metallaynes and related molecules: Solar cell materials and devices, Coordination Chemistry Reviews, https://doi.org/10.1016/j.ccr.2017.10.015, (2017). [Google Scholar]
- T. Fuyuki, A. Kitiyanan Photographic diagnosis of crystalline silicon solar cells utilizing electroluminescence, Appl. Phys. A., 96, 189–196, https://doi.org/10.1007/s00339-008-4986-0 (2009). [CrossRef] [Google Scholar]
- D.M. Powell, M.T. Winkler, H.J. Choi, C.B. Simmons, D.B. Needleman, T. Buonassisi, Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs, Energy Environ Sci, 5874–5883, (2012). [CrossRef] [Google Scholar]
- K. Nakamura, Current status and technology trend of crystalline Si solar cell, In 2017 24th International Workshop on Active-Matrix Flat panel Displays and Devices (AM-FPD), pp. 94–97, (2017). [Google Scholar]
- T. Druffel, R. Dharmadasa, B.W. Lavery, K. Ankireddy, Intense pulsed light processing for photovoltaic manufacturing, Solar Energy Materials and Solar Cells, 174, 359–369 (2018). [CrossRef] [Google Scholar]
- C.E. Witt, R.L. Mitchell, H.P. Thomas, M.I. Symko, R. King, D.S. Ruby, Manufacturing improvements in the photovoltaic manufacturing technology (PVMaT) project, Albuquerque, NM (United States): Sandia National Labs, (1998). [Google Scholar]
- Sheehan, Stephen, Surolia, Praveen, Byrne, Owen, Garner, Sean, Cimo, P., Li, Xinghua, Dowling, Denis, K. Thampi Flexible glass substrate-based dye sensitized solar cells, Solar Energy Materials and Solar Cells, 132, 237–244, 10.1016/j.solmat.2014.09.001. (2014). [Google Scholar]
- S.K. Sharma, S. Shriwastava, S. Kumar, K.R. Bhatt, C.C. Tripathi Alternative transparent conducting electrode materials for flexible optoelectronic devices, OptoElectronics Review (2018). [Google Scholar]
- Rowell, Michael, Mcgehee, Michael Transparent electrode requirements for thin film solar cell modules, Energy & Environmental Science, 4, pp. 131–134, 10.1039/C0EE00373E, (2010). [Google Scholar]
- Thomas Dittrich Material Concepts for Solar Cells, Imperial College Press, Energy Futures, Vol. 1, 2015. [Google Scholar]
- S. Tiwari, A. Purabgola, B. Kandasubramanian, Functionalized graphene as flexible electrodes for polymer photovoltaics, Journal of Alloys and Compounds, Vol. 825, 153954, https://doi.org/10.1016Zj.jallcom.2020.153954 (2020). [CrossRef] [Google Scholar]
- C.P. Muzzillo, Metal nano-grids for transparent conduction in solar cells, United States, https://doi.Org/10.1016/j.solmat.2017.04.048CP. [Google Scholar]
- W. Luo, Y.S. Khoo, A. Kumar, J.S. Low, Y. Li, Y.S. Tan, Y. Wang, A.G. Aberle, S. Ramakrishna A comparative life-cycle assessment of photovoltaic electricity generation in Singapore by multicrystalline silicon technologies, Sol Energy Mater Sol Cell 2018; 174:157–162. [CrossRef] [Google Scholar]
- J. Wong, T. Mueller, R. Sridharan, X. Zhang, Y. Yang, Z. Feng, Q. Huang, P. Verlinden, A.G. Aberle, Series resistance modeling of complex metallization geometries of solar cells using conductive line decomposition, Photovolt Spec Conf 2012; 38:501–504, (2012). [Google Scholar]
- A.J. Carr, M.J. Jansen, M. de Bruijne, L. Okel, M. Kloos, W. Eerenstein, High voltage MWT module with improved shadow performance, Photovolt Spec Conf 2014;40:2685–2688 (2014). [Google Scholar]
- W.H. Jhang, Y.J. Lin, Overpotential modification at the MoS 2 counter electrode/ electrolyte interfaces by thermal annealing resulting improvement in photovoltaic performance of dye-sensitized solar cells, J Mater Sci Mater Electron 26, 3739–3743 (2015) [CrossRef] [Google Scholar]
- G. Coletti, F. Ishimura, Y. Wu, E.E. Bende, G. Janssen, B.B. Van Aken, K. Hashimoto, Y. Watabe, 23% Efficiency metal wrap through silicon heterojunction solar cells, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 24172420 (2016). [Google Scholar]
- H.H. Hsieh, W.K. Lee, F.M. Lin, D.C. Wu, Performance of metal wrapped through solar module, Photovolt Spec Conf 2010, 35, 2823–2826, (2010). [Google Scholar]
- N.P. Bateman, D. Tonini, M. Galiazzo, G. Cellere Ion implanted metal wrap through silicon solar cells, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), 1203–1206 (2013). [CrossRef] [Google Scholar]
- M.R. Vogt, H. Holst, H.S. Huxel, S. Blankemeyer, R. Witteck, P. Bujard, J.B. Kues, C. Schinke, K. Bothe, M. Köntges, R. Brendel, PV module current gains due to structuredbacksheets, Energy Procedía, Vol. 124, Pages 495–503, ISSN 1876-6102, https://doi.org/10.1016/j.egypro.2017.09.286 (2017). [CrossRef] [Google Scholar]
- Priyanka Singh, N.M. Ravindra, “Temperature dependence of solar cell performance—an analysis,” Solar Energy Materials and Solar Cells, Volume 101, 2012, Pages 3645, ISSN 0927-0248, https://doi.org/10.1016/j.solmat.2012.02.019. [Google Scholar]
- S. Sharma, K. Jain, A. Sharma, Solar Cells: In Research and Applications—A Review, Materials Sciences and Applications, 06, 1145–1155, 10.4236/msa.2015.612113. [CrossRef] [Google Scholar]
- K. Zweible, Thin films: Past, present and future, Photo-volt-3, 279, (1995). [Google Scholar]
- Philip Jackson and R W, Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%, rrl Solar, 584–586, (2016). [Google Scholar]
- X. Wu, High Efficiency Polycrystalline CdTe Thin film solar cells, Elsevier, 803814, (2004). [Google Scholar]
- S. Hashmi and Miettunen, Review of materials and manufacturing options for large area flexible dye solar cells, Renewable and Sustainable Energy Reviews, 5–6, (2011). [Google Scholar]
- A. Blakers, Development of the PERC Solar Cell, IEEE Journal of Photovoltaics, vol. 9, no. 3, pp. 629–635, DOI: 10.1109/JPHOTOV.2019.2899460, May 2019. [CrossRef] [Google Scholar]
- A.T. Sankara Subramanian, P. Sabarish, M.D. Udayakumar, T. Vishnu Kumar, Performance analysis of various photovoltaic configurations under uniform shading and rapid partial shading formations, Biosci. Biotech. Res. Comm. Special Issue Vol. 13 No (3), Pp 185–192 (2020). [Google Scholar]
- IRENA, Future of solar photovoltaic: Deployment, investment, Technology, Grid Integration and Socio-Economic Aspects, International Renewable Energy Agency, Abudhabi, (2019). [Google Scholar]
- L. Gunaratne, Solar PVMarket Development in Sri Lanka, GEF Workshop: Making a Difference in Emerging PV Markets. Marrakech, Morocco, Sep (2000). [Google Scholar]
- O. Mah, Fundamentals of photovoltaic materials, National Solar Power Research Institute, 1998, pp. 1–10. [Google Scholar]
- Daniel Mesquita, João Lucas de Souza Silva, Hugo Moreira, Michelle Kitayama da Silva, Marcelo Villalva, A review and analysis of technologies applied in PV modules,” 10.1109/ISGT-LA.2019.8895369, 2019. Dr.A. Rajkumar, R. Jai Ganesh, V. Suresh Kumar, T. Vishnu Kumar, T. Ram Kumar, “Implementation of High Efficient Single Input Triple output DC-DC Converter,” Biosc.Biotech.Res.Comm. Special Issue Vol 13 No (3) 2020 Pp-48-55. [Google Scholar]
- National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html. [Google Scholar]
- A. Yoshino Lithium-ion Batteries: Achievements and Prospects, Angew. Chem. Int. Ed. 51, 5798–5800, https://doi.org/10.1002/anie.201105006 (2012). [CrossRef] [PubMed] [Google Scholar]
- Lithium-ion Battery Recycling Market by Battery Chemistry (Lithium-nickel Manganese Cobalt, Lithium-iron Phosphate, Lithium-Manganese Oxide, LTO, NCA, LCO), Industry (Automotive, Marine, Industrial, and Power), and Region - Global Forecast to 2030 (2020). [Google Scholar]
- M.S. Whittingham, Electrical Energy Storage and Intercalation Chemistry, Science 192, 1126, https://doi.org/10.1126/science.192.4244.1126 (1976). [CrossRef] [PubMed] [Google Scholar]
- M. Armand, J.M. Tarascon, Building better batteries, Nature 451, (2008) 652–657, https://doi.org/10.1038/451652a (2008). [CrossRef] [PubMed] [Google Scholar]
- M.S. Whittingham, Lithium Batteries and Cathode Materials, Chem. Rev. 104, (2004) 4271–4302, https://doi.org/10.1021/cr020731c. [Google Scholar]
- J.B. Goodenough, K.-S. Park The Li-Ion Rechargeable Battery: A Perspective, J. Am. Chem. Soc. 135, 1167–1176, https://doi.org/10.1021/ja3091438 (2013). [CrossRef] [PubMed] [Google Scholar]
- A. Manthiram A Critical Review of Lithium-Ion Battery Cathode Materials, Nat. Commun. 11, 1550, https://doi.org/10.1038/s41467-020-15355-0 (2020). [CrossRef] [Google Scholar]
- The dark side of renewable energy: Cobalt mining in the Democratic Republic of the Congo, https://www.theverge.com/2022/2/15/22933022/cobalt-mining-ev-electriv-vehicle-working-conditions-congo. [Google Scholar]
- Prior T., Wäger P.A., Stamp A., Widmer R., Giurco D. Sustainable governance of scarce metals: the case of lithium, Sci Total Environ, 461-462, 785–791 (2013). [CrossRef] [PubMed] [Google Scholar]
- Grosjean C., Miranda P.H., Perrin M., Poggi P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry, Renew Sustain Energy Rev, 16, 1735–1744 (2012). [CrossRef] [Google Scholar]
- A. Tullo Samsung reports on Galaxy Note 7 fires, C&EN Global Enterprise, 95 (5), 11 (2017). [Google Scholar]
- Rajitha, M., Swarupa, M. L., Latha, K. S., Bhoopal, N., & Shravani, C. (2024). Design and mathematical modelling of Electric Vehicle. In E3S Web of Conferences (Vol. 472, p. 01025). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
- K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev., 2004, 104 (10), 4303–4418. [CrossRef] [PubMed] [Google Scholar]
- V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev., 43 (13), 4714–4727 (2014). [CrossRef] [PubMed] [Google Scholar]
- Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 2016, 1, 16071. [CrossRef] [Google Scholar]
- X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Adv. Funct. Mater., 27 (10), 1605989 (2017). [CrossRef] [Google Scholar]
- P. Barai, K. Higa, V. Srinivasan, Effect of Initial State of Lithium on the Propensity for Dendrite Formation: A Theoretical Study, J. Electrochem. Soc., 164(2), A180–A189 (2017). [CrossRef] [Google Scholar]
- C. Monroe, J. Newman, Dendrite Growth in Lithium/Polymer Systems: A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions, J. Electrochem. Soc., 150(10), A1377–A1384 (2003). [CrossRef] [Google Scholar]
- I. Santana, Recycling of Lithium-Ion Batteries: Recent Advances and Perspectives, Mater. Chem. Phys. 190, 38–44 (2017). [CrossRef] [Google Scholar]
- X. Zheng et al., Environmental impact assessment of recycling waste lithium-ion batteries: A life cycle perspective, Waste Manag. 60, 680–688 (2017). [CrossRef] [Google Scholar]
- R. Golmohammadzadeh, F. Rashchi, E. Vahidi, Sustainable recycling of lithium- ion batteries: A critical review, Waste Manag. 64, 244–254 (2017). [CrossRef] [Google Scholar]
- M.-M. Wang, C.-C. Zhang, F.-S. Zhang Environmental impact assessment of recycling waste lithium-ion batteries: A life cycle perspective, Waste Manag. 67, 232–239 (2017). [CrossRef] [Google Scholar]
- Kim, H., Boysen, D. A., Newhouse, J. M., Spatocco, B. L., Chung, B., Burke, P. J., Sadoway, D. R., Liquid metal batteries: past, present, and future, Chemical reviews, 113 (3), 2075–2099 (2013). [CrossRef] [PubMed] [Google Scholar]
- Yeager, E. Fuel Cells: Basic Considerations, Power Sources Division, Proceedings of 12th Annual Battery Research and Development; Army Signal Research & Development Laboratory: Fort Monmouth, N.J., pp. 21–22, May 1958. [Google Scholar]
- The 10 ways renewable energy’s boom year will shape 2021, https://www.bloomberg.com/news/articles/2021-01-06/the-10-ways-renewable-energy-s-boom-year-will-shape-2021. [Google Scholar]
- Zhang, S., Liu, Y., Fan, Q., Zhang, C., Zhou, T., Kalantar-Zadeh, K., & Guo, Z. Liquid metal batteries for future energy storage, Energy & Environmental Science, 14 (8), 4177–4202 (2021) [CrossRef] [Google Scholar]
- Dr.A. Rajkumar, R. Jai Ganesh, V. Suresh Kumar, T. Vishnu Kumar, T. Ram Kumar Implementation of High Efficient Single Input Triple output DC-DC Converter, Biosc.Biotech.Res.Comm. Special Issue Vol 13 No (3) Pp. 48–55 https://www.nrel.gov/pv/cell-efficiency.html (2020). [Google Scholar]
- Y. Huang, R. Yu, G. Mao, et al. Unique FeP@C with polyhedral structure in-situ coated with reduced graphene oxide as an anode material for lithium-ion batteries, J. Alloys Compd. 841 (2020) 155670. [CrossRef] [Google Scholar]
- M. Armand, J.-M. Tarascon Building better batteries, Nature 451 (7179) (2008) 652–657. [CrossRef] [PubMed] [Google Scholar]
- Z. Sun, S. Ding PEO-based polymer electrolytes in lithium-ion batteries, Chin. Sci. Bull. 63 (22) 2280–2295 (2018). [CrossRef] [Google Scholar]
- Li, C., Wang, Z. Y., He, Z. J., Li, Y. J., Mao, J., Dai, K. H., & Zheng, J. C. An advance review of solid-state battery: Challenges, progress and prospects, Sustainable Materials and Technologies, 29, e00297 (2021). [Google Scholar]
- Geim, A. K. Graphene: status and prospects.” Science, 324 (5934), 1530–1534 (2009). [Google Scholar]
- Tan, Y. B., & Lee, J. M. Graphene for supercapacitor applications, Journal of Materials Chemistry A., 1 (47), 14814–14843 (2013). [CrossRef] [Google Scholar]
- Salahdin, O. D., Sayadi, H., Solanki, R., Parra, R. M. R., Al-Thamir, M., Jalil, A. T., & Kianfar, E. Graphene and carbon structures and nanomaterials for energy storage.” Applied Physics A., 128 (8), 1–23 (2022). [CrossRef] [Google Scholar]
- Sharma, P., & Bhatti, T. S. A review on electrochemical double-layer capacitors.” Energy conversion and management, 51 (12), 2901–2912 (2010). [CrossRef] [Google Scholar]
- Gao, Y. Graphene and polymer composites for supercapacitor applications: a review, Nanoscale research letters, 12 (1), 1–17 (2017). [CrossRef] [PubMed] [Google Scholar]
- Akbar, F., Kolahdouz, M., Larimian, S., Radfar, B., & Radamson, H. H. Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing, Journal of Materials Science: Materials in Electronics, 26 (7), 4347–4379 (2015). [CrossRef] [Google Scholar]
- Rani, R.U., Swarupa, M.L., Contribution Title High Accuracy Dataset Control from Solar Photovoltaic Arrays by Decision Tree-Based System. In: Sharma, H., Shrivastava, V., Bharti, K.K., Wang, L. (eds) Communication and Intelligent Systems. ICCIS 2022. Lecture Notes in Networks and Systems, vol 689. Springer, Singapore. https://doi.org/10.1007/978-981-99-2322-9_39 (2023). [Google Scholar]
- Swarupa, M.L., Divya, G., Lavanya, V.C.S.N. Multi-agent System for Energy Management of Renewable Energy in Domestic Cooking. In: Mahajan, V., Chowdhury, A., Padhy, N.P., Lezama, F. (eds) Sustainable Technology and Advanced Computing in Electrical Engineering. Lecture Notes in Electrical Engineering, vol 939. Springer, Singapore. https://doi.org/10.1007/978-981-19-4364-5_33 (2022). [Google Scholar]
- L. Swarupa, S. Lakshmi, K. Reddy, Virtual Power Plant Solution for Future Smart Energy Communities, 1st ed., CRC Press. https://doi.org/10.1201/9781003257202 (2022). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.