Open Access
Issue
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
Article Number 02023
Number of page(s) 7
Section Green Computing
DOI https://doi.org/10.1051/e3sconf/202561602023
Published online 24 February 2025
  1. Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., & Zimmermann, T. (2019). Software engineering for machine learning: A case study. Proceedings of the 41st International Conference on Software Engineering: Software Engineering in Practice, 291–300. [Google Scholar]
  2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., & Mane, D. (2016). Concrete problems in AI safety. arXiv preprint arXiv:1606.06565. [Google Scholar]
  3. Bertrand, L., Kermarrec, A., Krishnaswamy, E., & Venkatakrishnan, V. N. (2020). Anomaly detection in software defined networks. Computer Networks, 178, 107339. [CrossRef] [Google Scholar]
  4. Bosu, A., & Carver, J. (2013). Impact of peer code review on peer impression formation: A survey. Proceedings of the 2013 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, 133–142. [CrossRef] [Google Scholar]
  5. Catal, C., & Diri, B. (2009). A systematic review of software fault prediction studies. Expert Systems with Applications, 36 (4): 7346–7354. [CrossRef] [Google Scholar]
  6. Chen, Y., Chen, T., Zhang, Y., & Lei, Y. (2017). Learning to diagnose with LSTM recurrent neural networks. Proceedings of the 10th International Conference on Artificial Intelligence and Statistics, 1075–1083. [Google Scholar]
  7. Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608. [Google Scholar]
  8. Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of big data - evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. [CrossRef] [Google Scholar]
  9. Ferrari, A., Spoletini, P., & Gnesi, S. (2018). Ambiguity and tacit knowledge in requirements elicitation interviews. Requirements Engineering, 23 (3): 303–319. [Google Scholar]
  10. Feng, S., Xu, Y., & Zhang, Z. (2020). Code completion with neural attention and pointer networks. IEEE Transactions on Software Engineering. [Google Scholar]
  11. Gao, L., Su, Z., & Lyu, M. R. (2021). Automatic code review by learning the revision of source code. IEEE Transactions on Software Engineering. [Google Scholar]
  12. Gulzar, M. A., Miranskyy, A., & Nagappan, N. (2020). Predicting risk of release failures: An exploratory study. Journal of Systems and Software, 160, 110477. [Google Scholar]
  13. Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable Software Releases through Build, Test and Deployment Automation. Addison-Wesley. [Google Scholar]
  14. Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1 (9): 389–399. [CrossRef] [Google Scholar]
  15. Kamalrudin, M., & Sidek, R. N. (2020). Automatic ambiguity detection in software requirements: A systematic literature review. Journal of Systems and Software, 167, 110613. [CrossRef] [Google Scholar]
  16. Liang, P., Ding, Z., & Yu, Y. (2018). A machine learning approach to predicting performance and scalability of service-oriented software. IEEE Transactions on Services Computing, 11 (1): 64–75. [Google Scholar]
  17. Pradel, M., & Sen, K. (2018). DeepBugs: A learning approach to name-based bug detection. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis, 116–127. [Google Scholar]
  18. Ray, B., Posnett, D., Filkov, V., & Devanbu, P. (2016). A large-scale study of programming languages and code quality in GitHub. Communications of the ACM, 60 (10): 91–100. [Google Scholar]
  19. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?” Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144. [Google Scholar]
  20. Ricci, F., Rokach, L., Shapira, B., & Kantor, P. B. (2011). Recommender Systems Handbook. Springer. [CrossRef] [Google Scholar]
  21. Schmidt, B., Batmaz, Z., & Keçeli, K. (2020). Predictive maintenance of machine tools using LSTM neural networks. Procedía CIRP, 93, 465–470. [Google Scholar]
  22. Shar, L. K., Tan, H. B. K., & Briand, L. (2015). Mining SQL injection and cross site scripting vulnerabilities using hybrid program analysis. Proceedings of the 37th International Conference on Software Engineering, 642–651. [Google Scholar]
  23. Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M. (2019). Reinforcement learning for automatic test case prioritization and selection in continuous integration. IEEE Transactions on Software Engineering, 45 (12): 1195–1208. [Google Scholar]
  24. Tufano, M., Watson, C., Bavota, G., Poshyvanyk, D., White, M., & Oliveto, R. (2019). Deep learning and code search: Why does it matter? Proceedings of the 41st International Conference on Software Engineering, 968–979. [Google Scholar]
  25. Vaithilingam, P., Sewak, M., & Malhotra, P. (2019). Generative adversarial networks: Recent architectures and applications. arXiv preprint arXiv:1910.07017. [Google Scholar]
  26. Wang, S., Liu, T., & Tan, L. (2019). Automatically learning semantic features for defect prediction. Proceedings of the 41st International Conference on Software Engineering, 134–144. [Google Scholar]
  27. Xu, X., Lin, H., & Ding, W. (2020). A survey of clustering algorithms in terms of requirement engineering. IEEE Access, 8, 43232–43245. [Google Scholar]
  28. Zhang, F., Ding, X., & Gao, J. (2021). Data-driven software development: The impact of training data quality on machine learning-based software systems. Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 1010–1022. [Google Scholar]
  29. Zhang, Z., Jiang, Y., & Liu, Y. (2020). Automated test generation for software product lines: Achievements and challenges. ACM Computing Surveys, 53 (4): 1–40. [Google Scholar]
  30. Zhang, Z., Zhang, L., & Zhu, H. (2019). An empirical study of design patterns and software quality. Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 17–27. [Google Scholar]
  31. Rani, R.U., Swarupa, M.L. (2023). Contribution Title High Accuracy Dataset Control from Solar Photovoltaic Arrays by Decision Tree-Based System. In: Sharma, H., Shrivastava, V., Bharti, K.K., Wang, L. (eds) Communication and Intelligent Systems. ICCIS 2022. Lecture Notes in Networks and Systems, vol 689. Springer, Singapore. https://doi.org/10.1007/978-981-99-2322-939. [Google Scholar]
  32. Y. A. Rani, G. Srividya, A. Balaram, K. H. Kumar, A. Kiran and M. Silparaj, “Fake Account Detection Using ANN Based Model in Machine Learning,” 2024 International Conference on Science Technology Engineering and Management (ICSTEM), Coimbatore, India, 2024, pp. 1–7, DOI: 10.1109/ICSTEM61137.2024.10561061. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.