Open Access
Issue
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
Article Number 02024
Number of page(s) 14
Section Green Computing
DOI https://doi.org/10.1051/e3sconf/202561602024
Published online 24 February 2025
  1. J. Rane, S.K. Mallick, O. Kaya, and N.L. Rane. Artificial intelligence, machine learning, and deep learning in cloud, edge, and quantum computing: A review of trends, challenges, and future directions. Future Research Opportunities for Artificial Intelligence in Industry 4.0 and, 5:2–2, 2024. [Google Scholar]
  2. Jiaye Li, Yangding Li, Jiagang Song, Jian Zhang, and Shichao Zhang. Quantum support vector machine for classifying noisy data. IEEE Transactions on Computers, 2024. [Google Scholar]
  3. Hassan Abbas. Quantum machine learning-models and algorithms: Studying quantum machine learning models and algorithms for leveraging quantum computing advantages in data analysis, pattern recognition, and optimization. Australian Journal of Machine Learning Research & Applications, 4 (1): 221–232, 2024. [Google Scholar]
  4. Uchenna Joseph Umoga, Enoch Oluwademilade Sodiya, Ejike David Ugwuanyi, Boma Sonimitiem Jacks, Oluwaseun Augustine Lottu, Obinna Donald Daraojimba, Alexander Obaigbena, et al. Exploring the potential of ai-driven optimization in enhancing network performance and efficiency. Magna Scientia Advanced Research and Reviews, 10 (1): 368–378, 2024. [CrossRef] [Google Scholar]
  5. Madan Mohan Sati, Dinesh Kumar, Akhilesh Singh, Mohan Raparthi, Faisal Yousef Alghayadh, and Mukesh Soni. Two-area power system with automatic generation control utilizing pid control, fopid, particle swarm optimization, and genetic algorithms. In 2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), pages 1–6. IEEE, 2024. [Google Scholar]
  6. Kannadhasan Suriyan and R. Nagarajan. Particle swarm optimization in biomedical technologies: innovations, challenges, and opportunities. Emerging Technologies for Health Literacy and Medical Practice, pages 220–238, 2024. [CrossRef] [Google Scholar]
  7. Mohammad Shehab, Laith Abualigah, Husam Al Hamad, Hamzeh Alabool, Mohammad Alshinwan, and Ahmad M. Khasawneh. Moth-flame optimization algorithm: variants and applications. Neural Computing and Applications, 32 (14): 9859–9884, 2020. [CrossRef] [Google Scholar]
  8. Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic algorithm: past, present, and future. Multimedia tools and applications, 80:8091–8126, 2021. [CrossRef] [PubMed] [Google Scholar]
  9. Hongye Yu, Yusheng Zhao, and Tzu-Chieh Wei. Simulating large-size quantum spin chains on cloud-based superconducting quantum computers. Physical Review Research, 5(1):013183, 2023. [CrossRef] [Google Scholar]
  10. Flaminia Giacomini and Caslav Brukner. Quantum superposition of spacetimes obeys einstein’s equivalence principle. AVS Quantum Science, 4(1), 2022. [Google Scholar]
  11. Elisa Ba’umer, Vinay Tripathi, Derek S. Wang, Patrick Rall, Edward H. Chen, Swarnadeep Majumder, Alireza Seif, and Zlatko K. Minev. Efficient long-range entanglement using dynamic circuits. PRX Quantum, 5(3):030339, 2024. [CrossRef] [Google Scholar]
  12. Maxine T. Khumalo, Hazel A. Chieza, Krupa Prag, and Matthew Woolway. An investigation of ibm quantum computing device performance on combinatorial optimization problems. Neural Computing and Applications, pages 1–16, 2022. [Google Scholar]
  13. A. Javadi-Abhari et al., “Qiskit: An Open-source Framework for Quantum Computing,” IEEE Transactions on Quantum Engineering, vol. 1, pp. 1–19, 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8715261. [Accessed: Jan. 25, 2025]. [Google Scholar]
  14. D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: An Open Source Software Framework for Quantum Computing,” Quantum, vol. 2, p. 49, 2018. [Online]. Available: https://quantum-journal.org/papers/q-2018-01-31-49/. [Accessed: Jan. 25, 2025]. [CrossRef] [Google Scholar]
  15. IBM Qiskit, Available: https://www.ibm.com/quantum/qiskit. [Accessed: Jan. 25, 2025]. [Google Scholar]
  16. IBM Quantum, “Qiskit Runtime REST API,” IBM Quantum Documentation, [Online]. Available: https://docs.quantum.ibm.com/api/runtime. [Accessed: Jan. 25, 2025]. [Google Scholar]
  17. Quantum, “IBM Quantum Qiskit Runtime API,” IBM Cloud API Docs, [Online]. Available: https://cloud.ibm.com/apidocs/quantum-computing. [Accessed: Jan. 25, 2025]. [Google Scholar]
  18. N. Anoushka, “QC101 Quantum Computing & Intro to Quantum Machine Learning,” Udemy, 2023. [Online]. Available: https://www.udemy.com/course/qc101-quantum-computing-intro-to-quantum-machine-learning/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.