Open Access
Issue
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
Article Number 03002
Number of page(s) 19
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202561603002
Published online 24 February 2025
  1. A. Pappu, M. Saxena, & S. R. Asolekar. Solid wastes generation in India and their recycling potential in building materials. [Google Scholar]
  2. M. V. Madurwar, R. V. Ralegaonkar, & S. A. Mandavgane. Application of agro-waste for sustainable construction materials: A review. Application of agro-waste for sustainable construction materials: A review, 38, 872–878. (2013) [Google Scholar]
  3. S. Liuzzi, S. Sanarica, & P. Stefanizzi. Use of agro-wastes in building materials in the Mediterranean area: A review. Use of agro-wastes in building materials in the Mediterranean area: A review, 242–249. (2017) [Google Scholar]
  4. D. Rajput, S. S. Bhagade, S. P. Raut, R. V. Ralegaonkar, & S. A. Mandavgane. Reuse of cotton and recycle paper mill waste as building material. Reuse of cotton and recycle paper mill waste as building material, 34, 470–475. (2012) [Google Scholar]
  5. A. H. Alami. Experiments on olive husk-addition to masonry clay bricks on their mechanical properties, and their application and manufacturability as an insulating material. Experiments on olive husk-addition to masonry clay bricks on their mechanical properties, and their application and manufacturability as an insulating material, 83–86, 874–880. (2010) [Google Scholar]
  6. I. H. Ling, & D. C. L. Teo. Properties of EPS RHA lightweight concrete bricks under different curing conditions. Properties of EPS RHA lightweight concrete bricks under different curing conditions, 25(8), 3648–3655. (2011) [Google Scholar]
  7. S. P. Raut, R. Sedmake, S. Dhunde, R. V. Ralegaonkar, & S. A. Mandavgane. Reuse of recycle paper mill waste in energy absorbing light weight bricks. Reuse of recycle paper mill waste in energy absorbing light weight bricks, 27(1), 247–251. (2012) [Google Scholar]
  8. I. Demir. An investigation on the production of construction brick with processed waste tea. An investigation on the production of construction brick with processed waste tea, 41(9), 1274–1278. (2006) [Google Scholar]
  9. D. Eliche-Quesada, L. Pérez-Villarejo, F. J. Iglesias-Godino, C. Martínez-García, & F. A. Corpas-Iglesias. Incorporation of coffee grounds into clay brick production. Incorporation of coffee grounds into clay brick production, 110(4), 225–232. (2011) [Google Scholar]
  10. R. Saiah, B. Perrin, & L. Rigal. Improvement of thermal properties of fired clays by introduction of vegetable matter. Improvement of thermal properties of fired clays by introduction of vegetable matter, 34(2), 124–142. (2010) [Google Scholar]
  11. J. A. Lozano-Miralles, M. J. Hermoso-Orlaez. C. Martinez-Garcia, & J. I. Rojas-Sola. Comparative study on the environmental impact of traditional clay bricks mixed with organic waste using life cycle analysis. Sustainability (Switzerland). 10(8). (2018) [Google Scholar]
  12. W. Q. Chin. Y. H. Lee. M. Amran, R. Fediuk. N. Vatin. A. B. H. Kueh. & Y. Y. Lee. A Sustainable Reuse of Agro-Industrial Wastes into Green Cement Bricks. Materials. 15(5). (2022) [Google Scholar]
  13. M. A. Mannan. & C. Ganapathy. Concrete from an agricultural waste-oil palm shell (OPS). Building and Environment. 39(4). 441–448. (2004) [CrossRef] [Google Scholar]
  14. B. Belhadj. M. Bederina. Z. Makhloufi. R. M. Dheilly. N. Montrelay. & M. Qucneudcc. Contribution to the development of a sand concrete lightened by the addition of barley straws. Construction and Building Materials. 113. 513–522. (2016) [CrossRef] [Google Scholar]
  15. N. M. Al-Akhras. & B. A. Abu-Alfoul. Effect of wheat straw ash on mechanical properties of autoclaved mortar. (n.d.) [Google Scholar]
  16. A. C. Yerramala Ramachandrudu. Properties of Concrete with Coconut Shells as Aggregate Replacement. International Journal of Engineering Inventions. 1(6). (2012) [Google Scholar]
  17. Z. H. A. Alsalami. Study the effect of partially replacement sand by waste pistachio shells in cement mortar. Applied Adhesion Science. 5(1). (2017) [Google Scholar]
  18. M. M. Ul Islam. K. H. Mo. U. J. Alengaram. & M. Z. Jumaat. Durability properties of sustainable concrete containing high volume palm oil waste materials. Journal of Cleaner Production. 137. 167–177. (2016) [CrossRef] [Google Scholar]
  19. K. M. Liew. A. O. Sojobi. & L. W. Zhang. Green concrete: Prospects and challenges. Construction and Building Materials. 156. 1063–1095. (2017) [CrossRef] [Google Scholar]
  20. C. Jaturapitakkul. K. Kiattikomol. W. Tangchirapat. & T. Saeting. Evaluation of the sulfate resistance of concrete containing palm oil fuel ash. Construction and Building Materials. 21(7). 1399–1405. (2007) [CrossRef] [Google Scholar]
  21. T. Akram. S. A. Memon. & H. Obaid. Production of low cost self compacting concrete using bagasse ash. Construction and Building Materials. 23(2). 703–712. (2009) [CrossRef] [Google Scholar]
  22. V. Saraswathy. & H. W. Song. Corrosion performance of rice husk ash blended concrete. Construction and Building Materials. 21(8). 1779–1784. (2007) [CrossRef] [Google Scholar]
  23. R. Khan. A. Jabbar. I. Ahmad. W. Khan. A. N. Khan. & J. Mirza. Reduction in environmental problems using rice-husk ash in concrete. Construction and Building Materials. 30. 360–365. (2012) [CrossRef] [Google Scholar]
  24. A. L. G. Gastaldini. M. P. da Silva. F. B. Zamberlan. & C. Z. Mostardeiro Neto. Total shrinkage, chloride penetration, and compressive strength of concretes that contain clear-colored rice husk ash. Construction and Building Materials. 54. 369–377. (2014) [CrossRef] [Google Scholar]
  25. N. Amin. Use of Bagasse Ash in Concrete and Its Impact on the Strength and Chloride Resistivity. Journal of Materials in Civil Engineering. 23(5). 717–720. (2011) [CrossRef] [Google Scholar]
  26. E. M. R. Fairbairn. B. B. Americano. G. C. Cordeiro. T. P. Paula. R. D. Toledo Filho. & M. M. Silvoso. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. Journal of Environmental Management. 91(9). 1864–1871. (2010) [Google Scholar]
  27. D. A. Adesanya. & A. A. Raheem. Development of corn cob ash blended cement. Construction and Building Materials. 23(1). 347–352. (2009) [CrossRef] [Google Scholar]
  28. M. Shoaib Ismail. & A. M. Waliuddints. Effect of rice husk ash on high strength concrete. Construction and Building Materials. 10(1). (1996) [Google Scholar]
  29. G. Ramakrishna, & T. Sundararajan. Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study. Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study, 27(5), 547–553. (2005) [Google Scholar]
  30. R. C. Kanning, K. F. Portella, M. O. G. P. Bragança, M. M. Bonato, & J. C. M. dos Santos. Banana leaves ashes as pozzolan for concrete and mortar of Portland cement. Banana leaves ashes as pozzolan for concrete and mortar of Portland cement, 54, 460–465. (2014) [Google Scholar]
  31. A. Akkarapongtrakul, P. Julphunthong, & T. Nochaiya. Setting time and microstructure of Portland cement-bottom ash-sugarcane bagasse ash pastes. Setting time and microstructure of Portland cement-bottom ash-sugarcane bagasse ash pastes, 148(7), 1355–1362. (2017) [Google Scholar]
  32. B. A. Akinyemi, & C. Dai. Development of banana fibers and wood bottom ash modified cement mortars. Development of banana fibers and wood bottom ash modified cement mortars, 241, 118041. (2020) [Google Scholar]
  33. V. M. John, M. A. Cincotto, C. Sjöström, V. Agopyan, & C. T. A. Oliveira. Durability of slag mortar reinforced with coconut fibre. Durability of slag mortar reinforced with coconut fibre, 27(5), 565–574. (2005) [Google Scholar]
  34. M. R. Cabral, E. Y. Nakanishi, G. Mármol, J. Palacios, S. Godbout, R. Lagacé, H. Savastano, & J. Fiorelli. Potential of Jerusalem Artichoke (Helianth-us tuberosus L.) stalks to produce cement-bonded particleboards. Potential of Jerusalem Artichoke (Helianth-us tuberosus L.) stalks to produce cement-bonded particleboards, 122, 214–222. (2018) [Google Scholar]
  35. X. Y. Zhou, F. Zheng, H. G. Li, & C. L. Lu. An environment-fTiendly thermal insulation material from cotton stalk fibers. An environment-fTiendly thermal insulation material from cotton stalk fibers, 42(7), 1070–1074. (2010) [Google Scholar]
  36. J. Khedari, N. Nankongnab, J. Hirunlabh, & S. Teekasap. New low-cost insulation particleboards from mixture of durian peel and coconut coir. New low-cost insulation particleboards from mixture of durian peel and coconut coir, 39(1), 59–65. (2004) [Google Scholar]
  37. C. Rojas, M. Cea, A. Iriarte, G. Valdés, R. Navia, & J. P. Cárdenas-R. Thermal insulation materials based on agricultural residual wheat straw and corn husk biomass, for application in sustainable buildings. Thermal insulation materials based on agricultural residual wheat straw and corn husk biomass, for application in sustainable buildings, 20. (2019) [Google Scholar]
  38. M. E. Ali, & A. Alabdulkarem. On thermal characteristics and microstructure of a new insulation material extracted from date palm trees surface fibers. On thermal characteristics and microstructure of a new insulation material extracted from date palm trees surface fibers, 138, 276–284. (2017) [Google Scholar]
  39. M. Ali, A. Alabdulkarem, A. Nuhait, K. Al-Salem, G. Lannace, R. Almuzaiqer, A. Alturki, F. Al-Ajlan, Y. Al-Mosabi, & A. Al-Sulaimi. Thermal and acoustic characteristics of novel thermal insulating materials made of Eucalyptus Globulus leaves and wheat straw fibers. Thermal and acoustic characteristics of novel thermal insulating materials made of Eucalyptus Globulus leaves and wheat straw fibers, 32. (2020) [Google Scholar]
  40. A. Eschenhagen, M. Raj, N. Rodrigo, A. Zamora, L. Labonne, P. Evon, & H. Welemane. Investigation of Miscanthus and Sunflower Stalk Fiber-Reinforced Composites for Insulation Applications. Advances in Civil Engineering (2019) [Google Scholar]
  41. C. Onésippe, N. Passe-Coutrin, F. Toro, S. Delvasto, K. Bilba, & M. A. Arsène. Sugar cane bagasse fibres reinforced cement composites: Thermal considerations. Sugar cane bagasse fibres reinforced cement composites: Thermal considerations, 41(4), 549–556. (2010) [Google Scholar]
  42. M. Adom-Asamoah, A. Mark, & A. O. Russell. A Comparative study of bamboo reinforced concrete beams using different stirrup materials for rural construction. A Comparative study of bamboo reinforced concrete beams using different stirrup materials for rural construction, 2(1). (2011) [Google Scholar]
  43. G. C. Cordeiro, R. D. Toledo Filho, L. M. Tavares, & E. de M. R. Fairbairn. Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete, 39(2), 110–115. (2009) [Google Scholar]
  44. R. D. Tol E Edo Filho, K. Ghavami, G. L. England, & K. Scrivener. Development of vegetable fibre-mortar composites of improved durability. (n.d.) [Google Scholar]
  45. K. Ghavami. Bamboo as reinforcement in structural concrete elements. Bamboo as reinforcement in structural concrete elements, 27(6), 637–649. (2005) [Google Scholar]
  46. D. V. Ribeiro, & M. R. Morelli. Effect of calcination temperature on the pozzolanic activity of Brazilian sugar cane bagasse ash (SCBA). Effect of calcination temperature on the pozzolanic activity of Brazilian sugar cane bagasse ash (SCBA), 17(4), 974–981. (2014) [Google Scholar]
  47. E. Villar-Cociña, E. V. Morales, S. F. Santos, H. Savastano, & M. Frías. Pozzolanic behavior of bamboo leaf ash: Characterization and determination of the kinetic parameters. Pozzolanic behavior of bamboo leaf ash: Characterization and determination of the kinetic parameters, 33(1), 68–73. (2011) [Google Scholar]
  48. V. M. John, M. A. Cincotto, C. Sjostrom, V. Agopyan, & C. T. A. Oliveira. Durability of slag mortar reinforced with coconut fibre. Durability of slag mortar reinforced with coconut fibre, 27(5), 565–574. (2005) [Google Scholar]
  49. W. Acchar, & E. J. V. Dultra. Thermal analysis and X-ray diffraction of untreated coffee’s husk ash reject and its potential use in ceramics. Thermal analysis and X-ray diffraction of untreated coffee’s husk ash reject and its potential use in ceramics, 111(2), 1331–1334. (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.