Open Access
Issue
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
Article Number 03003
Number of page(s) 9
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202561603003
Published online 24 February 2025
  1. Z. Li, J. Liu, W. Zhao, Smart hospitals: concepts, challenges, and opportunities. IEEE Access 8, 142208–142217 (2020). [Google Scholar]
  2. D. Kumar, V. Sharma, S. Singh, IoT-based smart healthcare system: challenges and future prospects. Sensors 21(12), 1–21 (2021). [Google Scholar]
  3. M. Ahmed, R. Hussain, S. Lee, Data privacy challenges in smart healthcare: a comprehensive review. J. Med. Internet Res. 21(5), 1–15 (2019). [Google Scholar]
  4. F. Yu, P. Bhattacharya, H. Sun, Artificial intelligence and machine learning for smart healthcare: applications and technologies. Comput. Biol. Med. 133, 1–13 (2021). [Google Scholar]
  5. N. Kshetri, T. Voas, Blockchain for secure and transparent data management in smart hospitals. IEEE Comput. 52(12), 1–10 (2019). [CrossRef] [Google Scholar]
  6. F. Knirsch, D. Engel, C. Neureiter, M. Frincu, V. Prasanna, Privacy assessment of data flow graphs for an advanced recommender system in the smart grid. Proc. Int. Conf. Inf. Syst. Secur. Privacy, 89–106 (2015). [Google Scholar]
  7. A. Javadpour, G. Wang, S. Rezaei, Resource management in a peer-to-peer cloud network for IoT. Wirel. Pers. Commun. 115, 2471–2488 (2020). [CrossRef] [Google Scholar]
  8. F. Liu, T. Li, A clustering-anonymity privacy-preserving method for wearable IoT devices. Secur. Commun. Netw. 1–8 (2018). [Google Scholar]
  9. M. Gheisari, G. Wang, S. Chen, An edge computing-enhanced Internet of Things framework for privacy-preserving in smart city. Comput. Electr. Eng. 81, 106504 (2020). [CrossRef] [Google Scholar]
  10. R. Lu, K. Heung, A. H. Lashkari, A. A. Ghorbani, A lightweight privacy-preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access 5, 3302–3312 (2017). [CrossRef] [Google Scholar]
  11. A. J. Moshayedi, A. S. Roy, A. Taravet, L. Liao, J. Wu, M. Gheisari, A secure traffic police remote sensing approach via a deep learning-based low-altitude vehicle speed detector through UAVs in smart cities: algorithm, implementation and evaluation. Future Transp. 3, 189–209 (2023). [CrossRef] [Google Scholar]
  12. M. Gheisari, G. Wang, S. Chen, A. Seyfollahi, A method for privacy-preserving in IoT- SDN integration environment. Proc. IEEE Int. Conf. Parallel Distrib. Process. Appl., Ubiquitous Comput. Commun., Big Data Cloud Comput., Social Comput. Netw., Sustain. Comput. Commun., 895–902 (2018). [Google Scholar]
  13. T. Peng, Q. Liu, G. Wang, A multilevel access control scheme for data security in transparent computing. Comput. Sci. Eng. 19(1), 46–53 (2017). [CrossRef] [Google Scholar]
  14. M. Gheisari, G. Wang, W. Z. Khan, C. F. Campusano, A context-aware privacypreserving method for IoT-based smart city using software-defined networking. Comput. Secur. 87, 101470 (2019). [CrossRef] [Google Scholar]
  15. A. Jalili, M. Keshtgari, A new reliable controller placement model for software-defined WANs. J. AI Data Min. 8(2), 269–277 (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.