Open Access
Issue |
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
|
|
---|---|---|
Article Number | 03006 | |
Number of page(s) | 12 | |
Section | Sustainable Development | |
DOI | https://doi.org/10.1051/e3sconf/202561603006 | |
Published online | 24 February 2025 |
- H. Zhang, G. P. Cao and Y. S. Yang, Nanotechnology, 2007, 18, 195607 [CrossRef] [Google Scholar]
- P. S. Kuyate and V. Patel, Patent analysis and product survey on use of nanomaterials in lithiumion batteries http://www.nanowerk.com/spotlight/spotid=21950.php, Accessed September 12, 2012 [Google Scholar]
- D. Takagi, Y. Kobayashi, H. Hibino, S. Suzuki and Y. Homma, Nano Lett., 2008, 8, 832–835 [CrossRef] [PubMed] [Google Scholar]
- B. H. Chen, S. I. Chuang, W. R. Liu and J. G. Duh, ACS Appl. Mater. Interfaces, 2015, 7, 28166–28176 [CrossRef] [PubMed] [Google Scholar]
- He, M.; Zhang, X.; Jiang, K.; Wang, J.; Wang, Y. Pure Inorganic Separator for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 738–742 [CrossRef] [PubMed] [Google Scholar]
- M.A. Rahman; G. Song; A.I. Bhatt; Y.C. Wong; and C. Wen. Nanostructured silicon anodes for high-performance lithium-ion batteries. 2016, Adv. Funct. Mater., 26, 647–678. [CrossRef] [Google Scholar]
- Favors, Z.; Wang, W.; Bay, H.H.; George, A.; Ozkan, M.; Ozkan, C.S. Stable Cycling of SiO2 Nanotubes as High-Performance Anodes for Lithium-Ion Batteries. Sci. Rep. 2014, 4, 4605. [CrossRef] [Google Scholar]
- Rahman, M.; Wen, C. A study of the capacity fade of porous NiO/Ni foam as negative electrode for lithium-ion batteries. Ionics 2016, 22, 173–184 [Google Scholar]
- Liu, Y.; Liu, Q.; Xin, L.; Liu, Y.; Yang, F.; Stach, E.A.; Xie, J. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat. Energy 2017, 2, 17083. [CrossRef] [Google Scholar]
- Wu, X.; Fan, L.; Qiu, Y.; Wang, M.; Cheng, J.; Guan, B.; Guo, Z.; Zhang, N.; Sun, K. Ion-Selective Prussian-Blue-Modified Celgard Separator for High-Performance Lithium-Sulfur Battery. ChemSusChem 2018, 11, 3345–3355 [CrossRef] [PubMed] [Google Scholar]
- Liu, F.-Q.; Wang, W.-P.; Yin, Y.-X.; Zhang, S.-F.; Shi, J.-L.; Wang, L.; Zhang, X.-D.; Zheng, Y.; Zhou, J.-J.; Li, L.; et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci. Adv. 2018, 4, eaat5383 [CrossRef] [Google Scholar]
- Chen, T.; Kong, W.; Zhang, Z.; Wang, L.; Hu, Y.; Zhu, G.; Chen, R.; Ma, L.; Yan, W.; Wang, Y.; et al. Ionic liquid-immobilized polymer gel electrolyte with selfhealing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 2018, 54, 17–25 [CrossRef] [Google Scholar]
- Cui, Suihan, Yi Wei, Tongchao Liu, Wenjun Deng, Zongxiang Hu, Yantao Su, Hao Li, Maofan Li, Hua Guo, Yandong Duan, Weidong Wang, Mumin Rao, Jiaxin Zheng, Xinwei Wang, and Feng Pan. Optimized Temperature Effect of Li-Ion Diffusion with Layer Distance in Li(Ni x Mn y Co z )O 2 Cathode Materials for High Performance Li-Ion Battery. Advanced Energy Materials 6.4 (2016): n/a-n/a. [CrossRef] [Google Scholar]
- Besnard, Nicolas, Aurelien Etiemble, Thierry Douillard, Olivier Dubrunfaut, Pierre Tran-Van, Laurent Gautier, Sylvain Franger, Jean-Claude Badot, Eric Maire, and Bernard Lestriez. Multiscale Morphological and Electrical Characterization of Charge Transport Limitations to the Power Performance of Positive Electrode Blends for Lithium-Ion Batteries. Advanced Energy Materials 7.8 (2017): n/a-n/a [CrossRef] [PubMed] [Google Scholar]
- Dearborn S. Charging Li-ion Batteries for Maximum Run Times. Power Electronics Technology. 2005 April:40–49. [Google Scholar]
- Texas Instruments. Li-Ion Battery Charger solution using the MSP430. 2018 May [cited 2019 June 11]. Available from: http://www.ti.com/lit/an/slaa287a/slaa287a.pdf [Google Scholar]
- J.W. Choi and D. Aurbach. Promise and reality of high-energy-density post-lithium- ion batteries. National Review of Materials 2016, 1, 1–16. [Google Scholar]
- Song, Y.; Jiao, S.; Tu, J.; Wang, J.; Liu, Y.; Jiao, H.; Mao, X.; Guoa, Z.; Frayb, D.J. A long-life rechargeable Al ion battery based on molten salts. J. Mater. Chem. A 2017, 5, 1282–1291. [CrossRef] [Google Scholar]
- Shimizu, Y.; Uemura, K.; Matsuda, H.; Miura, N.; Yamazoe, N. Bi-Functional Oxygen Electrode Using Large Surface Area La1− xCax CoO3 for Rechargeable Metal-Air Battery. J. Electrochem. Soc. 1990, 137, 3430. [CrossRef] [Google Scholar]
- Wagemaker, M.; Van Well, A.A.; Kearley, G.J.; Mulder, F.M. The life and times of lithium in anatase TiO2. Solid State Ion. 2004, 175, 191–193. [CrossRef] [Google Scholar]
- Li, J.; Tang, Z.; Zhang, Z. Preparation and novel lithium intercalation properties of titanium oxide nanotubes. Electrochem. Solid State Lett. 2005, 8, A316 [CrossRef] [Google Scholar]
- A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005). 10.1038/nmat1368 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.