Open Access
Issue
E3S Web Conf.
Volume 616, 2025
2nd International Conference on Renewable Energy, Green Computing and Sustainable Development (ICREGCSD 2025)
Article Number 03031
Number of page(s) 11
Section Sustainable Development
DOI https://doi.org/10.1051/e3sconf/202561603031
Published online 24 February 2025
  1. R. H. Lasseter, “Smart Distribution: Coupled Microgrids,” in Proceedings of the IEEE, vol. 99, no. 6, pp. 1074–1082, June 2011, doi: 10.1109/JPROC.2011.2114630. [CrossRef] [Google Scholar]
  2. Qusay Hassan, Sameer Algburi, Aws Zuhair Sameen, Hayder M. Salman, Marek Jaslclur. A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications, Results in Engineering, Volume 20,2023,101621,ISSN 2590-1230, https://doi.org/10.1016/j.rineng.2023.101621 [CrossRef] [Google Scholar]
  3. M. A. Talha, S. A. Chowdhury and M. S. Shakif Bhuiyan, “Renewable Integration and Energy Management in DC Microgrid,” 2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), Dhaka, Bangladesh, 2024, pp. 634–639, doi: 10.1109/ICEEICT62016.2024.10534358. [CrossRef] [Google Scholar]
  4. J. A. P. Lopes, C. L. Moreira and A. G. Madureira, “Defining control strategies for MicroGrids islanded operation,” in IEEE Transactions on Power Systems, vol. 21, no. 2, pp. 916–924, May 2006, doi: 10.1109/TPWRS.2006.873018. [CrossRef] [Google Scholar]
  5. Parhili, Sina & Lotfi, Hossein & Khodaei, Amin & Bahramirad, Shay. (2015). State of the Art in Research on Microgrids: A Review. IEEE Access. 3. 1–1. 10.1109/ACCESS.2015.2443119. [Google Scholar]
  6. F. Nejabatkhah and Y. W. Li, “Overview of Power Management Strategies of Hybrid AC/DC Microgrid,” in IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7072–7089, Dec. 2015, doi: 10.1109/TPEL.2014.2384999. [CrossRef] [Google Scholar]
  7. dam Hirsch, Yael Parag, Josep Guerrero, Microgrids: A review of technologies, key drivers, and outstanding issues, Renewable and Sustainable Energy Reviews, Volume 90, 2018, Pages 402–411, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2018.03.040. [CrossRef] [Google Scholar]
  8. F. Nejabatkhah and Y. W. Li, “Overview of Power Management Strategies of Hybrid AC/DC Microgrid,” in IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7072–7089, Dec. 2015, doi: 10.1109/TPEL.2014.2384999. [CrossRef] [Google Scholar]
  9. Bayoumi, Ehab. (2016). Power electronics in smart grid distribution power systems: a review. International Journal of Industrial Electronics and Drives. 3. 20–48. 10.1504/IJIED.2016.077673. [CrossRef] [Google Scholar]
  10. M. Nabatirad, R. Razaghi and B. Bahrani, “Decentralized Energy Management and Voltage Regulation in Islanded DC Microgrids,” in IEEE Systems Journal, vol. 16, no. 4, pp. 5835–5844, Dec. 2022, doi: 10.1109/JSYST.2022.3190279. [CrossRef] [Google Scholar]
  11. Bindhu, S & Prabha, D.. (2015). A Survey on Control and Communication of Smart Micro Grid. Indian Journal of Science and Technology. 8. 10.17485/rjst/2015/v8i25/85920. [CrossRef] [Google Scholar]
  12. Safdar, Salman & Hamdaoui, Bechir & Cotilla-Sanchez, Eduardo & Guizani, Mohsen. (2013). A survey on communication infrastructure for micro-grids. 545–550. 10.1109/IWCMC.2013.6583616. [Google Scholar]
  13. Badal. F.R.. Das. P.. Sarker, S.K. et al. A survey on control issues in renewable energy integration and microgrid. Prot Control Mod Power Syst 4, 8 (2019). https://doi.org/10.1186/s41601-019-0122-8 [CrossRef] [Google Scholar]
  14. F. S. Al-Ismail, “DC Microgrid Planning, Operation, and Control: A Comprehensive Review,” in IEEE Access, vol. 9, pp. 36154–36172, 2021, doi: 10.1109/ACCESS.2021.3062840.a [CrossRef] [Google Scholar]
  15. Abhishek, A., Ranjan, A., Devassy, S., Kumar Verma, B., Ram, S.K. and Dhakar, A.K. (2020), Review of hierarchical control strategies for DC microgrid. IET Renewable Power Generation, 14: 1631–1640. https://doi.org/10.1049/iet-rpg.2019.1136 [CrossRef] [Google Scholar]
  16. M. Saleh, Y. Esa and A. A. Mohamed, “Communication-Based Control for DC Microgrids,” in IEEE Transactions on Smart Grid, vol. 10, no. 2, pp. 2180–2195, March 2019, doi: 10.1109/TSG.2018.2791361. [CrossRef] [Google Scholar]
  17. Kumar, Dinesh & Zare, Firuz & Ghosh, Arindam. (2017). DC Microgrid Technology: System Architectures, AC Grid Interfaces, Grounding Schemes, Power Quality, Communication Networks, Applications and Standardizations Aspects. IEEE Access. PP. 1–1. 10.1109/ACCESS.2017.2705914. [Google Scholar]
  18. Sahoo, Subham; Blaabjerg, Frede; Dragicevic, Tomislav (ed.): 'Cyber Security for Microgrids' (Energy Engineering, 2022) DOI: IET Digital Library, https://digital-library.theiet.org/content/books/po/pbpo196e. [Google Scholar]
  19. B.-S. Ko et al., “Flexible Control Structure for Enhancement of Scalability in DC Microgrids,” in IEEE Systems Journal, vol. 14, no. 3, pp. 4591–4601, Sept. 2020, doi: 10.1109/JSYST.2019.2963707. [CrossRef] [Google Scholar]
  20. Hang Yu, Songyan Niu, Ziyun Shao, Linni Jian, A scalable and reconfigurable hybrid AC/DC microgrid clustering architecture with decentralized control for coordinated operation, International Journal of Electrical Power & Energy Systems, Volume 135, 2022, 107476, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2021.107476. [CrossRef] [Google Scholar]
  21. Rudy Montoya, Binod P. Poudel, Ali Bidram, Matthew J. Reno, DC microgrid fault detection using multiresolution analysis of traveling waves, International Journal of Electrical Power & Energy Systems, Volume 135, 2022, 107590, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2021.107590. [CrossRef] [Google Scholar]
  22. Hategekimana, P.; Ferre, A.J.; Bernuz, J.M.R.; Ntagwirumugara, E. Fault Detecting and Isolating Schemes in a Low-Voltage DC Microgrid Network from a Remote Village. Energies 2022, 15, 4460. https://doi.org/10.3390/en15124460. [CrossRef] [Google Scholar]
  23. Md. Shafiul Alam, Fahad Saleh Al-Ismail, Fahad A. Al-Sulaiman, Mohammad. A. Abido, Energy management in DC microgrid with an efficient voltage compensation mechanism, Electric Power Systems Research, Volume 214, Part A, 2023, 108842, ISSN 0378-7796, https://doi.org/10.1016/i.epsr.2022.108842. [CrossRef] [Google Scholar]
  24. Rangarajan, S.S.; Raman, R.; Singh, A.; Shiva, C.K.; Kumar, R.; Sadhu, P.K.; Collins, E.R.; Senjyu, T. DC Microgrids: A Propitious Smart Grid Paradigm for Smart Cities. Smart Cities 2023, 6, 1690–1718. https://doi.org/10.3390/smartcities6040079. [CrossRef] [Google Scholar]
  25. Ali, Zulfiqar & Terriche, Yacine & Hoang, Le Quang Nhat & Zagam, Syed & Hassan, Mustafa & Sadiq, Muhammad & Su, Chun-Lien & Guerrero, Josep. (2021). Fault Management in DC Microgrids: A Review of Challenges, Countermeasures, and Future Research Trends. IEEE Access. PP. 1–1. 10.1109/ACCESS.2021.3112383. [Google Scholar]
  26. Arshi, O., Rai, A., Gupta, G. et al. IoT in energy: a comprehensive review of technologies, applications, and future directions. Peer-to-Peer Netw. Appl. 17, 2830–2869 (2024). https://doi.org/10.1007/s12083-024-01725-8 [CrossRef] [Google Scholar]
  27. Shahinzadeh, Hossein & Moradi, Jalal & Gharehpetian, Gevork B. & Nafisi, Hamed & Abedi, Mehrdad. (2019). IoT Architecture for Smart Grids. 22–30. 10.1109/IPAPS.2019.8641944. [Google Scholar]
  28. A. J. Ortiz-Larquin, J. Diaz-Carmona, E. Rodríguez-Segura, A. Espinosa-Calderon, J. Prado-Olivarez and A. Padilla-Medina, “IoT-CAN based system for remote monitoring and control of DC microgrids,” 2021 44th International Conference on Telecommunications and Signal Processing (TSP), Brno, Czech Republic, 2021, pp. 305–308, doi: 10.1109/TSP52935.2021.9522642. [CrossRef] [Google Scholar]
  29. Kanche Anjaiah, P.K. Dash, Ranjeeta Bisoi, Real-time validation of optimal energy management in DC microgrids by using modified rejection controller based improved sparrow search algorithm, e-Prime - Advances in Electrical Engineering, Electronics and Energy, Volume 7, 2024, 100420, ISSN 2772-6711, https://doi.org/10.1016/i.prime.2024.100420 [CrossRef] [Google Scholar]
  30. Govindasamy, S., Balapattabi, S.R., Kaliappan, B. et al. Energy management in microgrids using IoT considering uncertainties of renewable energy sources and electric demands: GBDT-JS approach. Electr Eng 105, 4409–4426 (2023). https://doi.org/10.1007/s00202-023-01947-8. [CrossRef] [Google Scholar]
  31. Michael G. Pecht; Myeongsu Kang, “Predictive Maintenance in the IoT Era,” in Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things, IEEE, 2019, pp.589–612, doi: 10.1002/9781119515326.ch21. [Google Scholar]
  32. Pathare, A.A., Sethi, D. Development of IoT-enabled solutions for renewable energy generation and net-metering control for efficient smart home. Discov Internet Things 4, 11 (2024). https://doi.org/10.1007/s43926-024-00065-6. [CrossRef] [Google Scholar]
  33. N. Khan, S. U. Khan, F. U. M. Ullah, M. Y. Lee and S. W. Baik, “AI-Assisted Hybrid Approach for Energy Management in IoT-Based Smart Microgrid,” in IEEE Internet of Things Journal, vol. 10, no. 21, pp. 18861–18875, 1 Nov. 1, 2023, doi: 10.1109/JIOT.2023.3293800. [CrossRef] [Google Scholar]
  34. A. Nammouchi, P. Aupke, A. Kassler, A. Theocharis, V. Raffa and M. D. Felice, “Integration of AI, IoT and Edge-Computing for Smart Microgrid Energy Management,” 2021 IEEE International Conference on Environment and Electrical Engineering and 2021. [Google Scholar]
  35. Murdan, A.P. (2024). Powering the Future: IoT-Enabled Smart Grids for Sustainable Energy Systems. In: Shaw, R.N., Siano, P., Makhilef, S., Ghosh, A., Shimi, S.L. (eds) Innovations in Electrical and Electronic Engineering. ICEEE 2023. Lecture Notes in Electrical Engineering, vol 1109. Springer, Singapore. https://doi.org/10.1007/978-981-99-8289-920. [Google Scholar]
  36. S. M. A. A. Abir, A. Anwar, J. Choi and A. S. M. Kayes, “IoT-Enabled Smart Energy Grid: Applications and Challenges,” in IEEE Access, vol. 9, pp. 50961–50981, 2021, doi: 10.1109/ACCESS.2021.3067331. [CrossRef] [Google Scholar]
  37. Phanthanachai, M. Tripathy and B. Pamulaparthy, “Smart DC Microgrid Architectures and its Cyber Security Challenges: An Overview,” 2024 Silicon Valley Cybersecurity Conference (SVCC), Seoul, Korea, Republic of, 2024, pp. 1–8, doi: 10.1109/SVCC61185.2024.10637310. [Google Scholar]
  38. Tabassum, T., Khalghani, M.R. (2023). Cybersecurity Challenges in Microgrids: Inverter-Based Resources and Electric Vehicles. In: Haes Alhelou, H., Hatziargyriou, N., Dong, Z.Y. (eds) Power Systems Cybersecurity. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-20360-24. [Google Scholar]
  39. Ben Dhaou, I., Spagnuolo, G., & Tenhunen, H. (Eds.). (2024). IoT Enabled-DC Microgrids: Architecture, Algorithms, Applications, and Technologies (1st ed.). CRC Press. https://doi.org/10.1201/9781003454571 [Google Scholar]
  40. Shaban, M.; Ben Dhaou, I.; Alsharekh, M.F.; Abdel-Akher, M. Design of a Partially Grid-Connected Photovoltaic Microgrid Using IoT Technology. Appl. Sci. 2021, 11, 11651. https://doi.org/10.3390/app112411651 [Google Scholar]
  41. Cherechi Ndukwe, M. Tariq Iqbal, Xiaodong Liang, Jahangir Khan, Lawrence Aghenta. LoRa-based communication system for data transfer in microgrids[J]. AIMS Electronics and Electrical Engineering, 2020, 4(3): 303–325. doi: 10.3934/ElectrEng.2020.3.303. [CrossRef] [Google Scholar]
  42. Rajitha, M., & Ram, A. R. (2024). An overview of Artificial Intelligence applications to electrical power systems and DC microgrids. In E3S Web of Conferences (Vol. 547, p. 01002). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  43. M. Rajitha and A. R. Ram, “DC Microgrid Technology: Study on DC Microgrid Bus Configurations and Architectures for Rural Electrification and a Proposed DC Microgrid Architecture,” 2024 International Conference on Social and Sustainable Innovations in Technology and Engineering (S.ASI-ITE), Tadepalligudem, India, 2024, pp. 168–173, doi: 10.1109/SASI-ITE58663.2024.00037 [Google Scholar]
  44. Reindl, J. Palm, Installing PV: Barriers and enablers experienced by non-residential property owners, Renewable and Sustainable Energy Reviews, Volume 141, 2021, 110829, ISSN 1364-0321, https://doi.org/10.1016/i.rser.2021.110829. [CrossRef] [Google Scholar]
  45. W. Ali et al., “Hierarchical Control of Microgrid Using IoT and Machine Learning Based Islanding Detection,” in IEEE Access, vol. 9, pp. 103019–103031, 2021, doi: 10.1109/ACCESS.2021.3098163. [CrossRef] [Google Scholar]
  46. Arbab-Zavar, B.; Palacios-Garcia, E.J.; Vasquez, J.C.; Guerrero, J.M. LoRa Enabled Smart Inverters for Microgrid Scenarios with Widespread Elements. Electronics 2021, 10, 2680. https://doi.org/10.3390/electronics10212680. [Google Scholar]
  47. Mohammadi, M., KavousiFard, A., Dabbaghjamanesh, M., Shaaban, M., Zeineldin, H. H., & El-Saadany, E. F. (2023). A Cyber-Physical Architecture for Microgrids based on Deep Learning and LORA Technology. arXiv preprint. https://arxiv.org/abs/2312.08818 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.