Open Access
Issue
E3S Web Conf.
Volume 617, 2025
2024 International Conference on Environment Engineering, Urban Planning and Design (EEUPD 2024)
Article Number 01008
Number of page(s) 5
Section Multi-dimensional Study on Ecological Environment and Resource Utilisation
DOI https://doi.org/10.1051/e3sconf/202561701008
Published online 21 February 2025
  1. Wu H, Cui H, Fu C, et al. Unveiling the crucial role of soil microorganisms in carbon cycling: A review[J]. Science of The Total Environment, 2023: 168627. [Google Scholar]
  2. Horwath W R. Soil carbon formation and persistence[M]//Soil Microbiology, Ecology and Biochemistry. Elsevier, 2024: 329-367. [CrossRef] [Google Scholar]
  3. Birner B, Rödenbeck C, Dohner J L, et al. Surprising stability of recent global carbon cycling enables improved fossil fuel emission verification[J]. Nature Climate Change, 2023, 13(9): 961-966. [CrossRef] [Google Scholar]
  4. Jones C, Mcconnell C, Coleman K, et al. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil[J]. Global Change Biology, 2010, 11(1):154-166. [Google Scholar]
  5. Stevens D P A. The impact of Land Surface Model vegetation parameterization on the terrestrial water and carbon cycles[J]. 2023. [Google Scholar]
  6. Gakaev R. Functional classification of forests: Study of carbon sequestration[C]//BIO Web of Conferences. EDP Sciences, 2023, 76: 06004. [Google Scholar]
  7. Schuur E A G, Bockheim J, Canadell J G, et al. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle[J]. Bioscience, 2008, 58(8):701-714. [CrossRef] [Google Scholar]
  8. Hashimoto S, Ito A, Nishina K. Divergent data-driven estimates of global soil respiration[J]. Communications Earth & Environment, 2023, 4(1): 460. [CrossRef] [Google Scholar]
  9. Spackman C, Allison C D. Carbon Sequestration on Rangelands: A Primer[J]. Agriculture and its Role in the Global Carbon Cycle \He, Liyin California Institute of Technology ProQuest Dissertations Publishing, 2023. 30604349. DOI:10.7907/34d6-nj32 [Google Scholar]
  10. Brown T, Hampp J. Ultra-long-duration energy storage anywhere: Methanol with carbon cycling[J]. Joule, 2023, 7(11): 2414-2420. [CrossRef] [Google Scholar]
  11. Mavrovic A, Sonnentag O, Lemmetyinen J, et al. Reviews and syntheses: Recent advances in microwave remote sensing in support of terrestrial carbon cycle science in Arctic–boreal regions[J]. Biogeosciences, 2023, 20(14): 2941-2970. [CrossRef] [Google Scholar]
  12. Liu J, Gao W, Liu T, et al. A bibliometric analysis of the impact of ecological restoration on carbon sequestration in ecosystems[J]. Forests, 2023, 14(7): 1442. [CrossRef] [Google Scholar]
  13. Guddaraddi A, Goutam P K, Sonaniya P, et al. Role of Biological Carbon Mitigation in Carbon Sequestration: A Review[J]. International Journal of Environment and Climate Change, 2023, 13(11): 749-757. [CrossRef] [Google Scholar]
  14. Prajapati S K, Choudhary S, Kumar V, et al. Carbon Sequestration: A Key Strategy for Climate Change Mitigation towards a Sustainable Future[J]. 2023. [Google Scholar]
  15. Zaret M. Microbes, herbivores, and grassland carbon cycling responses to biodiversity loss and nutrient pollution[D]. University of Minnesota, 2023. [Google Scholar]
  16. Mao Z, Liu H, Zhang Z. Enhancing the ocean carbon sink capacity of Shandong province, China, under the “dual carbon” goal[J]. Frontiers in Marine Science, 2023. [Google Scholar]
  17. Fendrich A. Carbon cycle as affected by soil erosion in Europe[D]. Université Paris -Saclay, 2023. [Google Scholar]
  18. Hotchkiss E R, DelSontro T. Organic Carbon Cycling and Ecosystem Metabolism[M]//Wetzel's Limnology. Academic Press, 2024: 939-997. [Google Scholar]
  19. Zhao D, Cai J, Xu Y, et al. Carbon sinks in urban public green spaces under carbon neutrality: A bibliometric analysis and systematic literature review[J]. Urban Forestry & Urban Greening, 2023: 128037. [Google Scholar]
  20. Wani O A, Kumar S S, Hussain N, et al. Multi-scale processes influencing global carbon storage and land- carbon-climate nexus: A critical review[J]. Pedosphere, 2023, 33(2): 250-267. [CrossRef] [Google Scholar]
  21. Exbrayat J F, Bloom A A, Carvalhais N, et al. Understanding the land carbon cycle with space data: current status and prospects[J]. Surveys in Geophysics, 2019, 40: 735-755. [CrossRef] [Google Scholar]
  22. Piao S, Wang X, Wang K, et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives[J]. Global Change Biology, 2020, 26(1): 300-318. [CrossRef] [PubMed] [Google Scholar]
  23. Lal R. Carbon cycling in global drylands[J]. Current climate change reports, 2019, 5: 221-232. [CrossRef] [Google Scholar]
  24. Jiang Y, Sun Y, Liu Y, et al. Exploring the correlation between waterbodies, green space morphology, and carbon dioxide concentration distributions in an urban waterfront green space: A simulation study based on the carbon cycle[J]. Sustainable Cities and Society, 2023, 98: 104831. [CrossRef] [Google Scholar]
  25. Prajapati S K, Kumar V, Dayal P, et al. THE ROLE OF CARBON IN LIFE'S BLUEPRINT AND CARBON CYCLE UNDERSTANDING EARTH'S ESSENTIAL CYCLING SYSTEM: BENEFITS AND HARMS TO OUR PLANET[J]. International Journal, 2023, 1(1): 21-32. [Google Scholar]
  26. Wu H, Cui H, Fu C, et al. Unveiling the crucial role of soil microorganisms in carbon cycling: A review[J]. Science of The Total Environment, 2023: 168627. [Google Scholar]
  27. Horwath W R. Soil carbon formation and persistence[M]//Soil Microbiology, Ecology and Biochemistry. Elsevier, 2024: 329-367. [CrossRef] [Google Scholar]
  28. Zhang J, Zhang C, Ma W, et al. Improving the Model Performance of the Ecosystem Carbon Cycle by Integrating Soil Erosion–Related Processes[J]. Atmosphere, 2023, 14(12): 1724. [CrossRef] [Google Scholar]
  29. Ma C, Xu Z. Research Status, Problems and Direction of Soil Organic Carbon in Zoige Peat Wetland[J]. Research in Ecology, 2023, 5(3): 1-10. [CrossRef] [Google Scholar]
  30. Wang S, Chen D, Liu Q, et al. Dominant influence of plants on soil microbial carbon cycling functions during natural restoration of degraded karst vegetation[J]. Journal of Environmental Management, 2023, 345: 118889. [CrossRef] [PubMed] [Google Scholar]
  31. Mu C, Abbott B W, Norris A J, et al. The status and stability of permafrost carbon on the Tibetan Plateau[J]. Earth-Science Reviews, 2020, 211: 103433. [CrossRef] [Google Scholar]
  32. Zhou W, Li J, Yue T, et al. Research progress of the grassland carbon cycle and grassland degradation in China[J]. Remote Sensing Monitoring and Evaluation of Degraded Grassland in China: Accounting of Grassland Carbon Source and Carbon Sink, 2020: 1-16. [Google Scholar]
  33. Soong J L, Fuchslueger L, Marañon‐Jimenez S, et al. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling[J]. Global change biology, 2020, 26(4): 1953-1961. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.