Open Access
Issue |
E3S Web Conf.
Volume 619, 2025
3rd International Conference on Sustainable Green Energy Technologies (ICSGET 2025)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 13 | |
Section | Innovative Technologies for Green Energy and Electric Mobility | |
DOI | https://doi.org/10.1051/e3sconf/202561901005 | |
Published online | 12 March 2025 |
- Y. Yang, F. Liang, Q. Zhu, and H. Zhang, “An Overview on Structural Health Monitoring and Fault Diagnosis of Offshore Wind Turbine Support Structures,” J. Mar. Sci. Eng., vol. 12, no. 3, 2024, doi: 10.3390/jmse12030377. [Google Scholar]
- A. Fazli and J. Poshtan, “Wind turbine fault detection and isolation robust against data imbalance using KNN,” Energy Sci. Eng., vol. 12, no. 3, pp. 1174–1186, 2024, doi: 10.1002/ese3.1706. [CrossRef] [Google Scholar]
- K. V. G. Rao et al., “Microgrid with, vehicle-to-grid and grid-to-vehicle technology for DC fast charging topology,” Renew. Energy Plug-In Electr. Veh., pp. 45–57, 2024, doi: 10.1016/b978-0-443-28955-2.00004-4. [Google Scholar]
- J. Tan, J. Wan, B. Chen, M. Safran, S. A. Alqahtani, and R. Zhang, “Selective Feature Reinforcement Network for Robust Remote Fault Diagnosis of Wind Turbine Bearing Under Non-Ideal Sensor Data,” IEEE Trans. Instrum. Meas., vol. 73, pp. 1–11, 2024, doi: 10.1109/TIM.2024.3375958. [Google Scholar]
- M. Yousuf, T. Alsuwian, A. A. Amin, S. Fareed, and M. Hamza, “IoT-based health monitoring and fault detection of industrial AC induction motor for efficient predictive maintenance,” Meas. Control (United Kingdom), 2024, doi: 10.1177/00202940241231473. [Google Scholar]
- Kanagarathinam, K., Aruna, S. K., Ravivarman, S., Safran, M., Alfarhood, S., & Alrajhi, W. (2023). Enhancing Sustainable Urban Energy Management through Short-Term Wind Power Forecasting Using LSTM Neural Network. Sustainability, 15(18), 13424. https://doi.org/10.3390/su151813424. [CrossRef] [Google Scholar]
- T. A. Devi, G. Sanjeev, K. V. Govardhan Rao, T. Venkata Sai Kalyani, R. Nittala, and M. K. Kumar, “GSM based Vehicle Security Theft Control System,” Proc. - 2024 3rd Int. Conf. Comput. Model. Simul. Optim. ICCMSO 2024, pp. 165–169, 2024, doi: 10.1109/ICCMSO61761.2024.00043. [Google Scholar]
- W. Hu et al., “A transferable diagnosis method with incipient fault detection for a digital twin of wind turbine,” Digit. Eng., vol. 1, no. May, p. 100001, 2024, doi: 10.1016/j.dte.2024.100001. [CrossRef] [Google Scholar]
- Saravanan, S. M., Rajaiah, J., Shanmugasundaram, R., & Ponnusamy, J. (2023). Sensor Failure Identification And Segregation Using Wavelet Performance Analysis For WSN Based Status Surveillance System Of A Wind Turbine. International Journal of Industrial Engineering: Theory, Applications and Practice, 30(3). https://doi.org/10.23055/ijietap.2023.30.3.8917 [Google Scholar]
- M. Pushkarna et al., “A new-fangled connection of UPQC tailored power device from wind farm to weak-grid,” Front. Energy Res., vol. 12, no. February, pp. 1–19, 2024, doi: 10.3389/fenrg.2024.1355867. [CrossRef] [Google Scholar]
- K. V. G. Rao et al., “IOT-Powered Crop Shield System for Surveillance and Auto Transversum,” 2023 IEEE 3rd Int. Conf. Sustain. Energy Futur. Electr. Transp. SeFet 2023, pp. 1–6, 2023, doi: 10.1109/SeFeT57834.2023.10245773. [Google Scholar]
- K. V. G. Rao, M. Kiran Kumar, and B. Srikanth Goud, “An Independently Controlled Two Output Half Bridge Resonant LED Driver,” Electr. Power Components Syst., vol. 0, no. 0, pp. 1–21, 2023, doi: 10.1080/15325008.2023.2238695. [Google Scholar]
- X. Zou et al., “Current Status and Prospects of Research on Sensor Fault Diagnosis of Agricultural Internet of Things,” Sensors, vol. 23, no. 5, pp. 1–25, 2023, doi: 10.3390/s23052528. [Google Scholar]
- Prasanth Rao, Adiraju & Reddy, K. & Velayutham, Sathiyamoorthi. (2021). Automated Soil Residue Levels Detecting Device with IoT Interface. 10.4018/978-1-7998-2566-1.ch007. [Google Scholar]
- D. L. Padmaja, S. Tammali, N. Gajavelly, “A Comparative Study on Natural Disasters,” 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 2022, pp. 1704-1709, doi: 10.1109/ICAAIC53929.2022.9793039 [Google Scholar]
- E. Hamatwi, P. Barendse, and A. Khan, “A Case for Micromachines in Laboratory- Based DFIG Wind Turbine Systems for Fault Studies,” IEEE Trans. Ind. Appl., vol. 59, no. 2, pp. 1754–1764, 2023, doi: 10.1109/TIA.2022.3232308. [CrossRef] [Google Scholar]
- T. Zhang, J. Chen, J. Xie, and T. Pan, “SASLN: Signals Augmented Self-Taught Learning Networks for Mechanical Fault Diagnosis under Small Sample Condition,” IEEE Trans. Instrum. Meas., vol. 70, 2021, doi: 10.1109/TIM.2020.3043098. [Google Scholar]
- Hema, M.S., Maheshprabhu, R., et al. Prediction analysis for Parkinson disease using multiple feature selection & classification methods. Multimed Tools Appl 82, 42995–43012 (2023). https://doi.org/10.1007/s11042-023-15280-6 [CrossRef] [Google Scholar]
- Mamatha, K., Neelima, S., & Reddy, K. S. (2020). Fostering Employability - Synergy between Industry and Academia. Journal of Engineering Education/Journal of Engineering Education Transformations/Journal of Engineering Education Transformation, 33(0),319. https://doi.org/10.16920/jeet/2020/v33i0/150178. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.