Open Access
Issue |
E3S Web Conf.
Volume 619, 2025
3rd International Conference on Sustainable Green Energy Technologies (ICSGET 2025)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 13 | |
Section | Innovative Technologies for Green Energy and Electric Mobility | |
DOI | https://doi.org/10.1051/e3sconf/202561901006 | |
Published online | 12 March 2025 |
- Chepurov, V. Sonin, D. Shcheglov, E. Zhimulev, S. Sitnikov, A. Yelisseyev, and A. Chepurov. Surface Porosity of Natural Diamond Crystals after the Catalytic Hydrogenation. Crystals 2021; 11, 1341. [CrossRef] [Google Scholar]
- S. Łoś, K. Fabisiak, K. Paprocki, M. Szybowicz, A. Dychalska, E. Spychaj-Fabisiak, and W. Franków. The hydrogenation impact on electronic properties of p- diamond/n-Si heterojunctions. Materials 2021; 14, 6616. [CrossRef] [PubMed] [Google Scholar]
- H. Gomez, M. N. Groves, and M. R. Neupane. Study of the structural phase transition in diamond (100) & (111) surfaces. Carbon Trends 2011; 3, 33. [Google Scholar]
- Z. S. Fatomi, A. D. Nugraheni, and S. Sholihun. Vibrational effect on vacancy concentration in diamond: the density-functional-theory calculation. Comput. Condens. Matter 2022; 32, e00708. [CrossRef] [Google Scholar]
- Y. Dai, C. X. Yan, A. Y. Li, Y. Zhang, and S. H. Han. Effects of hydrogen on electronic properties of doped diamond. Carbon 2005; 43, 1009-1014. [CrossRef] [Google Scholar]
- J. H. Wort and R. S. Balmer. Diamond as an electronic material. Mater. Today 2008; 11, 22-28. [CrossRef] [Google Scholar]
- J. Isberg, J. Hammersberg, E. Johansson, T. Wikström, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook. High carrier mobility in single-crystal plasma-deposited diamond. Science 2002; 297, 1670. [CrossRef] [PubMed] [Google Scholar]
- H. Sakaue, N. Yoshimura, S. Shingubara, and T. Takahagi. Low dielectric constant porous diamond films formed by diamond nanoparticles. Appl. Phys. Lett. 2003; 83, 2226-2228. [CrossRef] [Google Scholar]
- J. P.Goss, R. Jones, M. I. Heggies, C. P. Ewels, P. R., Briddon, and S. Öberg. Theory of hydrogen in diamond. Phys. Rev. B 2002; 65, 115207. [CrossRef] [Google Scholar]
- Purnawati, N. Fajariah, H. Prayogi, J. P. Bermundo, A. D. Nugraheni, and S. Sholihun. Dissociation-energy calculations of C-multivacancies in diamond: the density-functional-theory study. Jpn. J. Appl. Phys. 2023; 62, 051002. [CrossRef] [Google Scholar]
- X. J. Hu, Y. B. Dai, R. B. Li, H. S. Shen, and X. C. He. The diffusion of vacancies near a diamond (001) surface. Solid State Commun. 2002; 122, 45-48. [CrossRef] [Google Scholar]
- B. Zlepetz and M. Kertesz. Divacancies in diamond: a stepwise formation mechanism. Phys. Chem. Chem. Phys. 2014; 16, 1515. [CrossRef] [PubMed] [Google Scholar]
- J. P. Goss. Theory of hydrogen in diamond. J. Phys. Condens. Matter. 2003; 15, R551. [CrossRef] [Google Scholar]
- P. Briddon, R. Jones, and G. M. S. Lister. Hydrogen in diamond. J. Phys. C Solid State Phys. 1988; 21, L1027. [CrossRef] [Google Scholar]
- Saada, J. Adler, and R. Kalish. Lowest-energy site for hydrogen in diamond. Phys. Rev. B 2000; 61, 10711. [CrossRef] [Google Scholar]
- T. Yamasaki, A. Kuroda, T. Kato, J. Nara, J. Koga, T. Uda, K. Minami, and T. Ohno. Multi-axis decomposition of density functional program for strong scaling up to 82,944 nodes on the K computer: Compactly folded 3D-FFT communicators in the 6D torus network. Comput. Phys. Commun. 2019; 244, 264-276. [CrossRef] [Google Scholar]
- W. Amalia, P. Nurwantoro, and. S. Sholihun. Density-functional-theory calculations of structural and electronic properties of vacancies in monolayer hexagonal boron nitride (h-BN). Comput. Condens. Matter. 2019; 16, e00354. [CrossRef] [Google Scholar]
- Rajasekaran, S., Murugaperumal Krishnamoorthy, Suresh Srinivasan, and Pramod Kumar Gouda. “Integrated renewable electrification system modeling and tri- objective optimization analysis for net zero energy institutional building: a simulated case study of green hydrogen production.” Environment, Development and Sustainability (2024): 1-30. [Google Scholar]
- F. Birch. Finite elastic strain of cubic crystals. Phys. Rev. 1947; 71, 809. [CrossRef] [Google Scholar]
- K. McMahan. Interstitial-sphere linear muffin-tin orbital structural calculations for C and Si. Phys. Rev. B 1984; 30, 5835. [CrossRef] [Google Scholar]
- M. T. Yin and M. L. Cohen. Ground-state properties of diamond. Phys. Rev. B 1981; 24, 6121. [CrossRef] [Google Scholar]
- W. Kaiser and W. L. Bond. Nitrogen, a major impurity in common type I diamond. Phys. Rev. 1959; 115, 857. [CrossRef] [Google Scholar]
- T. Yamanaka, S. Morimoto, and H. Kanda. Influence of the isotope ratio on the lattice constant of diamond. Phys. Rev. B 1994; 14, 9341. [CrossRef] [PubMed] [Google Scholar]
- H. Holloway, K. C. Hass, M. A. Tamor, T. R. Anthony, and W. F. Banholzer. Isotopic dependence of the lattice constant of diamond. Phys. Rev. B 1991; 13, 7123. [CrossRef] [PubMed] [Google Scholar]
- D. Richards and M. Amos. Shape optimization with surface-mapped CPPNs. IEEE Trans. Evol. Comput. 2016; 21, 391-407. [Google Scholar]
- S. Sholihun, H. P. Kadarisman, and P. Nurwantoro. Density-functional-theory calculations of formation energy of the nitrogen-doped diamond. Indones. J. Chem. 2018; 18, 749-754. [CrossRef] [Google Scholar]
- Z. Priska, S. Hidayati, S. Sholihun, W. Amalia, and P. Nurwantoro. Hydrogen and Water Adsorptions on Monolayer Hexagonal Boron Nitride (h-BN): The First- Principles Calculations. Key Engineering Materials 2021; 884, 387-393. [CrossRef] [Google Scholar]
- Y. N. Apriati, A. D. Nugraheni, and S. Sholihun. Interaction of C60 with Small Molecules: Adsorption - Inclusion Energy Calculation Using the Density Functional Theory. In: Materials Science Forum. 2022; 1066, 135-143, Trans Tech Publications Ltd. [CrossRef] [Google Scholar]
- C. Glover, M. E. Newton, P. M. Martineau, S. Quinn, D. J. Twitchen. Hydrogen incorporation in diamond: The vacancy-hydrogen complex. Phys. Rev. Lett. 2004; 92, 135502. [CrossRef] [PubMed] [Google Scholar]
- D. E. P. Vanpoucke and K. Haenen. Revisiting the neutral C-vacancy in diamond: Localization of electrons through DFT+ U. Diam. Relat. Mater. 2017; 79, 60-69. [CrossRef] [Google Scholar]
- Zelferino, S. Salustro, J. Baima, V. Lacivita, R. Orlando, and R. Dovesi. The electronic states of the neutral vacancy in diamond: a quantum mechanical approach. Theor. Chem. Acc. 2016; 135, 1-11. [CrossRef] [Google Scholar]
- A. Emery and C. Wolverton. High-Throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO 3 perovskites. Sci. Data 2017; https://doi.org/10.1038/sdata.2017.153. [Google Scholar]
- R. Q. Hood, P. R. C. Kent, R. J. Needs, and P. R. Briddon. Quantum Monte Carlo Study of the Optical and Diffusive Properties of the Vacancy Defect in Diamond. Phys. Rev. Lett. 2003; https://doi.org/10.1103/ PhysRevLett.91.076403. [Google Scholar]
- K. Ramakrishna and J. Vorberger. Ab-initio dielectric response function of diamond and other relevant high pressure phases of carbon. J. Condens. Matter Phys. 2019; 32, 095401. [Google Scholar]
- P. Deak, B. Aradi, T. Fraunheim, E. Janzen, and A. Gali. Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B 2010; 81, 153203. [CrossRef] [Google Scholar]
- Tran and P. Blaha. Importance of the kinetic energy density for band gap calculations in solids with density functional theory. J. Phys. Chem. A. 2017; 121, 3318-3325. [CrossRef] [PubMed] [Google Scholar]
- O. Madelung. Semiconductors-basic data. Springer Science & Business Media, 2012. [Google Scholar]
- S. P. Gao. Band gaps and dielectric functions of cubic and hexagonal diamond polytypes calculated by many-body perturbation theory. Phys. Status Solidi B 2015; 252, 235-242. [CrossRef] [Google Scholar]
- Y. Ma, J. Ma, Y. Lv, J. Liao, Y. Ji, and H. Bai. Effect of mono vacancy defect on the charge carrier mobility of carbon nanotubes: A case study on (10,0) tube from first-principles. Superlattices Microstruct. 2016; 99, 140-144. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.