Open Access
Issue
E3S Web Conf.
Volume 619, 2025
3rd International Conference on Sustainable Green Energy Technologies (ICSGET 2025)
Article Number 02012
Number of page(s) 11
Section Innovations in Power Systems and Grid Infrastructure
DOI https://doi.org/10.1051/e3sconf/202561902012
Published online 12 March 2025
  1. Mai, W., Usseglio-Viretta, F. L., Colclasure, A. M., & Smith, K. (2020). Enabling fast charging of lithium-ion batteries through secondary-/dual-pore network: Part II- numerical model. Electrochimica Acta, 341, 136013. [CrossRef] [Google Scholar]
  2. Hannan, M. A., Lipu, M. H., Hussain, A., & Mohamed, A. (2017). A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renewable and Sustainable Energy Reviews, 78, 834-854. [CrossRef] [Google Scholar]
  3. Karthick, K., Ravivarman, S., & Priyanka, R. (2024). Optimizing Electric Vehicle Battery Life: A Machine Learning Approach for Sustainable Transportation. World Electric Vehicle Journal, 15(2), 60. https://doi.org/10.3390/wevj15020060 [CrossRef] [Google Scholar]
  4. Annamalai, M. C., et al., (2023). A comprehensive review on isolated and non-isolated converter configuration and fast charging technology: For battery and plug in hybrid electric vehicle. Heliyon, Volume 9, Issue 8, e18808. [CrossRef] [PubMed] [Google Scholar]
  5. Zähringer, M., Schneider, J., Balke, G., Gamra, K. A., Klein, N., & Lienkamp, M. (2024). Fast track to a million: A simulative case study on the influence of charging management on the lifetime of battery electric trucks. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 9, 100731. [CrossRef] [Google Scholar]
  6. Hema, R., & Venkatarangan, M. J. (2024). Advancing sustainable development: Introducing a novel fast charging technique for Li-ion batteries with supercapacitor integration. Computers and Electrical Engineering, 120, 109810. [CrossRef] [Google Scholar]
  7. Khan, S. A., Hussain, I., Thakur, A. K., Yu, S., Lau, K. T., He, S., ... & Zhao, J. (2024). Advancements in battery thermal management system for fast charging/discharging applications. Energy Storage Materials, 65, 103144. [CrossRef] [Google Scholar]
  8. Mouratidis, P. (2024). Augmenting electric vehicle fast charging stations with battery- flywheel energy storage. Journal of Energy Storage, 97, 112957. [CrossRef] [Google Scholar]
  9. Jamila, E. H., & Taoufik, N. (2023, November). Review of Models and Methods for Estimating Battery State of Charge in Electric Vehicles. In International Conference on Advanced Materials for Sustainable Energy and Engineering (pp. 475-485). Cham: Springer Nature Switzerland. [Google Scholar]
  10. Vinayaka, K. U., & Katari, J. S. (2021). Charge/discharge control design models of li- ion battery in electric vehicles using MATLAB/Simulink. In Smart Sensors Measurements and Instrumentation: Select Proceedings of CISCON 2020 (pp. 433-445). Springer Singapore. [Google Scholar]
  11. Lee, J., Kang, M. J., & Park, G. L. (2014). Battery consumption modeling for electric vehicles based on artificial neural networks. In Computational Science and Its Applications–ICCSA 2014: 14th International Conference, Guimarães, Portugal, June 30–July 3, 2014, Proceedings, Part IV 14 (pp. 733-742). Springer International Publishing. [Google Scholar]
  12. Yi, Y., Zhou, Y., Su, H., Fang, C., Wang, H., Feng, D., & Li, H. (2023). Overview of EV battery testing and evaluation of EES systems located in EV charging station with PV. Energy Reports, 9, 134-144. [CrossRef] [Google Scholar]
  13. Conte, F. V. (2006). Battery and battery management for hybrid electric vehicles: a review. e & i Elektrotechnik und Informationstechnik, 123(10), 424-431. [CrossRef] [Google Scholar]
  14. Muthampatty Sengottaiyan, S., Subramanian, S., Shanmugasundaram, R., & Samudram Manickam, K. (2024). Modular multilevel converter-based hybrid energy storage system for electric vehicles: Design, simulation, and performance evaluation. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 16777–16793. https://doi.org/10.1080/15567036.2024.2434199 [CrossRef] [Google Scholar]
  15. Raharjo, J., Wikarta, A., Sidharta, I., Yuniarto, M. N., Firdaus, M. I., & Zulhaimi, M. F. B. (2020, April). Environmental testing for reliable battery management system in electric vehicle. In Journal of Physics: Conference Series (Vol. 1517, No. 1, p. 012025). IOP Publishing. [CrossRef] [Google Scholar]
  16. Thulasingam, Muthukumaran, ADV Raj Periyanayagam, and Murugaperumal Krishnamoorthy. “Feasibility analysis and modeling of a solar hybrid system for residential electric vehicle charging.” International Journal of Electrical and Computer Engineering 14, no. 2 (2024): 1251-1262. [Google Scholar]
  17. Vijayakumar, S., Dhasarathan, N., Devabalan, P., & Jehan, C. (2019). Advancement and design of robotic manipulator control structures on cyber physical production system. Journal of Computational and Theoretical Nanoscience, 16(2), 659-663. [CrossRef] [Google Scholar]
  18. Jeyakrishnan, S., Vijayakumar, S., Naga Swapna Sri, M., & Anusha, P. (2024). An integration of RSM and ANN modelling approach for prediction of FSW joint properties in AA7178/AA5456 alloys. Canadian Metallurgical Quarterly, 1-18. [Google Scholar]
  19. Kakkassery, J. J., Rao, N. S., Ramalingam, P. S., Jeyakrishnan, S., Vijayakumar, S., & Pradeep, A. (2024). Artificial neural network approach for predicting the mechanical properties of Al7475/Flyash/SiC hybrid composite. Interactions, 245(1), 139. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.