Open Access
Issue
E3S Web Conf.
Volume 621, 2025
Second International Conference on Green Energy, Environmental Engineering and Sustainable Technologies 2024 (ICGEST 2024)
Article Number 03020
Number of page(s) 11
Section Sustainable Technology for Environmental Protection
DOI https://doi.org/10.1051/e3sconf/202562103020
Published online 19 March 2025
  1. Annette Evans, Vladimir Strezov, and Tim J. Evans, Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews, 2009. 13(5): p. 1082-1088. [Google Scholar]
  2. S. Ramakrishna and R. Jose, Addressing sustainability gaps. Sci Total Environ, 2022. 806(Pt 3): p. 151208. [Google Scholar]
  3. Rajan Jose and Seeram Ramakrishna, Humanity’s Top Ten Existential Concerns. Materials Circular Economy, 2022. 4(1): p. 26. [Google Scholar]
  4. Seeram Ramakrishna and Rajan Jose, Principles of materials circular economy. Matter, 2022. 5(12): p. 4097-4099. [Google Scholar]
  5. K. Kumar, R. Kumar, S. Kaushal, N. Thakur, A. Umar, S. Akbar, et al., Biomass waste-derived carbon materials for sustainable remediation of polluted environment: A comprehensive review. Chemosphere, 2023. 345: p. 140419. [Google Scholar]
  6. Samuel Castro-Pardo, Sohini Bhattacharyya, Ram Manohar Yadav, Ana Paula de Carvalho Teixeira, M. Astrid Campos Mata, Thibeorchews Prasankumar, et al., A comprehensive overview of carbon dioxide capture: From materials, methods to industrial status. Materials Today, 2022. 60: p. 227-270. [Google Scholar]
  7. S. Yu, J. He, Z. Zhang, Z. Sun, M. Xie, Y. Xu, et al., Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. Adv Mater, 2024. 36(18): p. e2307412. [CrossRef] [PubMed] [Google Scholar]
  8. R. K. Mishra and K. Mohanty, A review of the next-generation biochar production from waste biomass for material applications. Sci Total Environ, 2023. 904: p. 167171. [Google Scholar]
  9. Priyanka Lamba, Parul Singh, Pankaj Singh, Pushpa Singh, Bharti, Ashwani Kumar, et al., Recent advancements in supercapacitors based on different electrode materials: Classifications, synthesis methods and comparative performance. Journal of Energy Storage, 2022. 48: p. 103871. [CrossRef] [Google Scholar]
  10. Shuai Liu, Li Wei, and Huai Wang, Review on reliability of supercapacitors in energy storage applications. Applied Energy, 2020. 278. [Google Scholar]
  11. Jiří Libich, Josef Máca, Jiří Vondrák, Ondřej Čech, and Marie Sedlaříková, Supercapacitors: Properties and applications. Journal of Energy Storage, 2018. 17: p. 224-227. [CrossRef] [Google Scholar]
  12. Ravindranath Tagore Yadlapalli, RamaKoteswara Rao Alla, Rajani Kandipati, and Anuradha Kotapati, Super capacitors for energy storage: Progress, applications and challenges. Journal of Energy Storage, 2022. 49. [Google Scholar]
  13. Yuyin Dai, Hongguang Zhao, Ri Sa, Qiuyu Lin, and Yinghua Li, Synergistic coupling of NiCo-LDH in high-performance supercapacitors via hydrothermal method: Optimal utilization of the potential window. Journal of Alloys and Compounds, 2025. 1010. [Google Scholar]
  14. Chuanyin Xiong, Congmin Zheng, Xue Jiang, Xiaofen Xiao, Hongyan Wei, QiuSheng Zhou, et al., Recent progress of green biomass based composite materials applied in supercapacitors, sensors, and electrocatalysis. Journal of Energy Storage, 2023. 72. [Google Scholar]
  15. Sunaina Saini, Prakash Chand, and Aman Joshi, Biomass derived carbon for supercapacitor applications: Review. Journal of Energy Storage, 2021. 39. [Google Scholar]
  16. Zijiong Li, Dongfang Guo, Yanyue Liu, Haiyan Wang, and Lingli Wang, Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chemical Engineering Journal, 2020. 397. [Google Scholar]
  17. K. Yamini Yasoda, M. Sathish Kumar, and Sudip Kumar Batabyal, Polyaniline decorated manganese oxide nanoflakes coated graphene oxide as a hybrid-supercapacitor for high performance energy storage application. Ionics, 2019. 26(5):p. 2493-2500. [Google Scholar]
  18. Biao Kong, Debabrata Sikdar, Jing Tang, Yang Liu, Malin Premaratne, Wei Zhang, et al., Interfacial assembly of mesoporous nanopyramids as ultrasensitive cellular interfaces featuring efficient direct electrochemistry. NPG Asia Materials, 2015. 7(7):p. e204-e204. [Google Scholar]
  19. V. Mullaivananathan, P. Packiyalakshmi, and N. Kalaiselvi, Multifunctional bio carbon: a coir pith waste derived electrode for extensive energy storage device applications. RSC Advances, 2017. 7(38): p. 23663-23670. [Google Scholar]
  20. Lin Zhu, Chuanchuan Li, Wenjiao Ren, Mingyang Qin, and Liqiang Xu, Multifunctional vanadium nitride@N-doped carbon composites for kinetically enhanced lithium–sulfur batteries. New Journal of Chemistry, 2018. 42(7): p. 5109-5116. [Google Scholar]
  21. M. Harilal, B. Vidyadharan, Misnon, II, G. M. Anilkumar, A. Lowe, J. Ismail, et al., One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors. ACS Appl Mater Interfaces, 2017. 9(12): p. 10730-10742. [CrossRef] [PubMed] [Google Scholar]
  22. X. Yu, X. Han, C. Chang, Y. Hu, C. C. Xu, and S. Fang, Corncob-derived activated carbon for roxarsone removal from aqueous solution: isotherms, kinetics, and mechanism. Environ Sci Pollut Res Int, 2020. 27(13): p. 15785-15797. [Google Scholar]
  23. P. S. Thue, E. C. Lima, J. M. Sieliechi, C. Saucier, S. L. P. Dias, J. C. P. Vaghetti, et al., Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass. J Colloid Interface Sci, 2017. 486: p. 163-175. [Google Scholar]
  24. Eda Köseoğlu and Canan Akmil-Başar, Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Advanced Powder Technology, 2015. 26(3): p. 811-818. [CrossRef] [Google Scholar]
  25. Mambo Moyo, George Nyamhere, Edith Sebata, and Upenyu Guyo, Kinetic and equilibrium modelling of lead sorption from aqueous solution by activated carbon from goat dung. Desalination and Water Treatment, 2014. 57(2): p. 765-775. [Google Scholar]
  26. Dibyashree Shrestha, Santi Maensiri, Unchista Wongpratat, Soo Wohn Lee, and Armila Rajbhandari Nyachhyon, Shorea robusta derived activated carbon decorated with manganese dioxide hybrid composite for improved capacitive behaviors. Journal of Environmental Chemical Engineering, 2019. 7(5). [Google Scholar]
  27. Vinay S. Bhat, Titilope John Jayeoye, Thitima Rujiralai, Uraiwan Sirimahachai, Kwok Feng Chong, and Gurumurthy Hegde, Acacia auriculiformis–Derived Bimodal Porous Nanocarbons via Self-Activation for High-Performance Supercapacitors. Frontiers in Energy Research, 2021. 9. [Google Scholar]
  28. A. Fujimoto, Y. Yamada, M. Koinuma, and S. Sato, Origins of sp(3)C peaks in C1s X-ray Photoelectron Spectra of Carbon Materials. Anal Chem, 2016. 88(12): p. 6110-4. [CrossRef] [PubMed] [Google Scholar]
  29. S. K. Jerng, D. Seong Yu, J. Hong Lee, C. Kim, S. Yoon, and S. H. Chun, Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy. Nanoscale Res Lett, 2011. 6(1): p. 565. [Google Scholar]
  30. Qun Wang, Bin Qin, Heng-Xiang Li, Xiao-Hua Zhang, Xin Tian, Li’e Jin, et al., Honeycomb-like carbon with tunable pore size from bio-oil for supercapacitor. Microporous and Mesoporous Materials, 2020. 309. [Google Scholar]
  31. Guijing Liu, Lei Wang, Bo Wang, Tiantian Gao, and Dianlong Wang, A reduced graphene oxide modified metallic cobalt composite with superior electrochemical performance for supercapacitors. RSC Advances, 2015. 5(78): p. 63553-63560. [Google Scholar]
  32. J. Huang, J. Wu, F. Dai, and C. M. Li, 3D honeycomb-like carbon foam synthesized with biomass buckwheat flour for high-performance supercapacitor electrodes. Chem Commun (Camb), 2019. 55(62): p. 9168-9171. [Google Scholar]
  33. Q. Wang, Z. Lai, C. Luo, J. Zhang, X. Cao, J. Liu, et al., Honeycomb-like activated carbon with microporous nanosheets structure prepared from waste biomass cork for highly efficient dye wastewater treatment. J Hazard Mater, 2021. 416: p. 125896. [Google Scholar]
  34. Rakhmawati Farma, Nur’aini Nur’aini, Irma Apriyani, Awitdrus Awitdrus, Erman Taer, and Apriwandi Apriwandi, Honeycomb-Like Carbon with Tunable Pore Size from Biomass Phoenix Dactylifera Midrib for Highly Compressible Binder-Free Supercapacitors. Jom, 2023. 75(3): p. 708-717. [Google Scholar]
  35. Adetunji Ajibola Awe, Beatrice Olutoyin Opeolu, Olalekan Siyanbola Fatoki, Olushola Sunday Ayanda, Vanessa Angela Jackson, and Reinette Snyman, Preparation and characterisation of activated carbon from Vitisvinifera leaf litter and its adsorption performance for aqueous phenanthrene. Applied Biological Chemistry, 2020. 63(1). [Google Scholar]
  36. Buzuayehu Abebe, H. C. Ananda Murthy, and Enyew Amare, Summary on Adsorption and Photocatalysis for Pollutant Remediation: Mini Review. Journal of Encapsulation and Adsorption Sciences, 2018. 08(04): p. 225-255. [CrossRef] [Google Scholar]
  37. Divyashree A, Shoriya Aruni Bt Abdul Manaf, Yallappa S, Chaitra K, Kathyayini N, and Gurumurthy Hegde, Low cost, high performance supercapacitor electrode using coconut wastes: eco-friendly approach. Journal of Energy Chemistry, 2016. 25(5): p. 880-887. [CrossRef] [Google Scholar]
  38. S. R. Srither, A. Karthik, S. Arunmetha, D. Murugesan, and V. Rajendran, Electrochemical supercapacitor studies of porous MnO2 nanoparticles in neutral electrolytes. Materials Chemistry and Physics, 2016. 183: p. 375-382. [Google Scholar]
  39. Q. T. Qu, B. Wang, L. C. Yang, Y. Shi, S. Tian, and Y. P. Wu, Study on electrochemical performance of activated carbon in aqueous Li2SO4, Na2SO4 and K2SO4 electrolytes. Electrochemistry Communications, 2008. 10(10): p. 1652-1655. [Google Scholar]
  40. E. Taer, R. Taslim, A. W. Putri, A. Apriwandi, and A. Agustino, Activated Carbon Electrode Made From Coconut Husk Waste For Supercapacitor Application. International Journal of Electrochemical Science, 2018. 13(12): p. 12072-12084. [CrossRef] [Google Scholar]
  41. T. Sesuk, P. Tammawat, P. Jivaganont, K. Somton, P. Limthongkul, and W. Kobsiriphat, Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material. Journal of Energy Storage, 2019. 25. [Google Scholar]
  42. Erman Taer, Verdy Manoto Naipospos, Rika Taslim, Agustino, and Apriwandi, Activated Carbon Monolith Derived from Coconut Husk Fiber as Electrode Material for Supercapacitor Energy Storage. Journal of Physics: Conference Series, 2020. 1655(1). [Google Scholar]
  43. A. Daraghmeh, S. Hussain, I. Saadeddin, L. Servera, E. Xuriguera, A. Cornet, et al., A Study of Carbon Nanofibers and Active Carbon as Symmetric Supercapacitor in Aqueous Electrolyte: A Comparative Study. Nanoscale Res Lett, 2017. 12(1): p. 639. [Google Scholar]
  44. Xining Zang, Caiwei Shen, Mohan Sanghadasa, and Liwei Lin, High‐Voltage Supercapacitors Based on Aqueous Electrolytes. ChemElectroChem, 2018. 6(4): p. 976-988. [Google Scholar]
  45. Maciej Galinski, Krzysztof Babeł, and Krzysztof Jurewicz, Performance of an Electrochemical double layer capacitor based on coconut shell active material and ionic liquid as an electrolyte. Journal of Power Sources, 2013. 228: p. 83-88. [CrossRef] [Google Scholar]
  46. Johanna Fischer, Björn Pohle, Evgenia Dmitrieva, Katrin Thümmler, Steffen Fischer, and Daria Mikhailova, Symmetric supercapacitors with cellulose-derived carbons and Na2SO4 electrolytes operating in a wide temperature range. Journal of Energy Storage, 2022. 55. [Google Scholar]
  47. A. Kumar, N. Kumar, Y. Sharma, J. Leu, and T. Y. Tseng, Synthesis of Free-Standing Flexible rGO/MWCNT Films for Symmetric Supercapacitor Application. Nanoscale Res Lett, 2019. 14(1): p. 266. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.