Open Access
Issue
E3S Web Conf.
Volume 624, 2025
2025 11th International Conference on Environment and Renewable Energy (ICERE 2025)
Article Number 01002
Number of page(s) 9
Section Sustainable Urban Planning and Smart Infrastructure
DOI https://doi.org/10.1051/e3sconf/202562401002
Published online 08 April 2025
  1. Duc, H N., & Truong, T P. Water resources and environment in and around Ho Chi Minh City, Vietnam. University of Idaho Library, 1(19), https://doi.org/10.5070/g311910533 (2003). [Google Scholar]
  2. Ioannou, A E., Creaco, E., & Laspidou, C. Exploring the Effectiveness of Clustering Algorithms for Capturing Water Consumption Behavior at Household Level. Multidisciplinary Digital Publishing Institute, 13(5), 2603–2603. https://doi.org/10.3390/su13052603, (2021). [Google Scholar]
  3. Cominola, A., Nguyen, K., Giuliani, M., Stewart, R A., Maier, H R., & Castelletti, A. Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data. Wiley, 55(11), 9315–9333. https://doi.org/10.1029/2019wr024897, (2019). [Google Scholar]
  4. Lange, D., Ribalta, M., Echeverria, L., & Pocock, J. Profiling urban water consumption using autoencoders and time-series clustering techniques. IOP Publishing, 1136(1), 012005–012005. https://doi.org/10.1088/1755-1315/1136/1/012005, (2023). [Google Scholar]
  5. Yang, A., Zhang, H., Stewart, R A., & Nguyen, K. Enhancing Residential Water End Use Pattern Recognition Accuracy Using Self-Organizing Maps and K-Means Clustering Techniques: Autoflow v3. 1. Multidisciplinary Digital Publishing Institute, 10(9), 1221–1221. https://doi.org/10.3390/w10091221, (2018). [Google Scholar]
  6. Malinowski, M R B., & Povinelli, R J. Using Smart Meters to Learn Water Customer Behavior. Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/tem.2020.2995529, (2020). [Google Scholar]
  7. Carboni, D., Gluhak, A., McCann, J A., & Beach, T. Contextualising Water Use in Residential Settings: A Survey of Non-Intrusive Techniques and Approaches. Multidisciplinary Digital Publishing Institute, 16(5), 738–738. https://doi.org/10.3390/s16050738, (2016). [Google Scholar]
  8. Billerbeck, C., & Júnior, A V M. Regras operativas ótimas do Sistema Cantareira para um período crítico de vazões. Brazilian Association of Sanitary and Environmental Engineering, 23(6), 1121–1130. https://doi.org/10.1590/s1413-41522018172373, (2018). [Google Scholar]
  9. Clercq, D D., Smith‐Miles, K., Chou, B., Gonzalez, A., Kothapalle, R., Li, C., Dong, X., Liu, S., & Wen, Z. Identification of urban drinking water supply patterns across 627 cities in China based on supervised and unsupervised statistical learning. Elsevier BV, 223, 658–667. https://doi.org/10.1016/j.jenvman.2018.06.073, (2018). [Google Scholar]
  10. Zou, H., Zou, Z., & Wang, X. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China. Multidisciplinary Digital Publishing Institute, 12(11), 14400–14413. https://doi.org/10.3390/ijerph121114400, (2015). [Google Scholar]
  11. Candelieri, A. Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly Detection. Multidisciplinary Digital Publishing Institute, 9(3), 224–224. https://doi.org/10.3390/w9030224, (2017). [Google Scholar]
  12. Nguyen, K., Stewart, R A., Zhang, H., Sahin, O., & Siriwardene, N. Re-engineering traditional urban water management practices with smart metering and informatics. Elsevier BV, 101, 256–267. https://doi.org/10.1016/j.envsoft.2017.12.015, (2018). [Google Scholar]
  13. Chévez, P J., Barbero, D A., Martini, I., & Díscoli, C A. Application of the k-means clustering method for the detection and analysis of areas of homogeneous residential electricity consumption at the Great La Plata region, Buenos Aires, Argentina. Elsevier BV, 32, 115–129. https://doi.org/10.1016/j.scs.2017.03.019, (2017). [Google Scholar]
  14. Li, K., Wang, F., Zhao, Z., Mi, Z., Sun, H., Chun, L., Wang, B., & Jing, L. Analysis on residential electricity consumption behavior using improved k-means based on simulated annealing algorithm. https://doi.org/10.1109/peci.2016.7459209, (2016). [Google Scholar]
  15. Steffelbauer, D., Blokker, M., Buchberger, S G., Knobbe, A., & Abraham, E. Dynamic Time Warping Clustering to Discover Socio-Economic Characteristics in Smart Water Meter Data. https://arxiv.org/pdf/2112.13778v2.pdf, (2021). [Google Scholar]
  16. Syakur, M A., Khotimah, B K., Rochman, E M S., & Satoto, B D. Integration K-Means Clustering Method and Elbow Method For Identification of The Best Customer Profile Cluster. IOP Publishing, 336, 012017–012017. https://doi.org/10.1088/1757-899x/336/1/012017, (2018). [Google Scholar]
  17. Halkidi, M., Batistakis, Y., & Vazirgiannis, M. Clustering validity checking methods. Association for Computing Machinery, 31(3), 19–27. https://doi.org/10.1145/601858.601862, (2002). [Google Scholar]
  18. Dubes, R C., & Jain, A K. Validity studies in clustering methodologies. Elsevier BV, 11(4), 235–254. https://doi.org/10.1016/0031-3203(79)90034-7, (1979). [Google Scholar]
  19. Yuan, C., & Yang, H. Research on K-Value Selection Method of K-Means Clustering Algorithm. Multidisciplinary Digital Publishing Institute, 2(2), 226–235. https://doi.org/10.3390/j2020016, (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.