Open Access
Issue
E3S Web Conf.
Volume 628, 2025
2025 7th International Conference on Environmental Prevention and Pollution Control Technologies (EPPCT 2025)
Article Number 01016
Number of page(s) 7
Section Research on the Characterization and Remediation Technologies of Environmental Pollutants
DOI https://doi.org/10.1051/e3sconf/202562801016
Published online 16 May 2025
  1. Cordell D, Drangert J O, White S. The story of phosphorus: global food security and food for thought[J]. Global environmental change, 2009, 19(2): 292–305. [CrossRef] [Google Scholar]
  2. Bunce J T, Ndam E, Ofiteru I D, et al. A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems[J]. Frontiers in Environmental Science, 2018, 6: 8. [CrossRef] [Google Scholar]
  3. Molinos-Senante M, Hernández-Sancho F, Sala-Garrido R, et al. Economic feasibility study for phosphorus recovery processes[J]. Ambio, 2011, 40: 408–416. [CrossRef] [PubMed] [Google Scholar]
  4. Ye H, Yang H, Han N, et al. Risk assessment based on nitrogen and phosphorus forms in watershed sediments: A case study of the upper reaches of the Minjiang Watershed[J]. Sustainability, 2019, 11(20): 5565. [CrossRef] [Google Scholar]
  5. Kim T, Lee J, Kim J, et al. Behavioral characteristics of phosphorus in sediments according to the forms of phosphorus[J]. Journal of Ecology & Environment, 2015, 38(3). [Google Scholar]
  6. Jupp A R, Beijer S, Narain G C, et al. Phosphorus recovery and recycling-closing the loop[J]. Chemical Society Reviews, 2021, 50(1): 87–101. [CrossRef] [PubMed] [Google Scholar]
  7. Krishnamoorthy N, Dey B, Unpaprom Y, et al. Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105579. [CrossRef] [Google Scholar]
  8. Yan Y, Sun X, Ma F, et al. Removal of phosphate from etching wastewater by calcined alkaline residue: Batch and column studies[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(4): 1709–1716. [CrossRef] [Google Scholar]
  9. Edet U A, Ifelebuegu A O. Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste[J]. Processes, 2020, 8(6): 665. [CrossRef] [Google Scholar]
  10. Jiang X, Yuan Y, Ma F, et al. Enhanced biological phosphorus removal by granular sludge in anaerobic/aerobic/anoxic SBR during start-up period[J]. Desalination and Water Treatment, 2016, 57(13): 5760–5771. [CrossRef] [Google Scholar]
  11. Liu Z, Zhang Y, Zhou W, et al. Comparison of nitrogen and phosphorus removal between two typical processes under low temperature in a fullscale municipal wastewater treatment plant[J]. Water, 2022, 14(23): 3874. [CrossRef] [Google Scholar]
  12. Mehta C M, Khunjar W O, Nguyen V, et al. Technologies to recover nutrients from waste streams: a critical review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(4): 385–427. [CrossRef] [Google Scholar]
  13. Kopecký M, Kolář L, Konvalina P, et al. Modified biochar—a tool for wastewater treatment[J]. Energies, 2020, 13(20): 5270. [CrossRef] [Google Scholar]
  14. Wu X, Quan W, Chen Q, et al. Efficient adsorption of nitrogen and phosphorus in wastewater by biochar[J]. Molecules, 2024, 29(5): 1005. [CrossRef] [PubMed] [Google Scholar]
  15. Zhang Y, Zhang W, Zhang H, et al. Nano-Zero-Valent Zinc-Modified Municipal Sludge Biochar for Phosphorus Removal[J]. Molecules, 2023, 28(7): 3231. [CrossRef] [PubMed] [Google Scholar]
  16. Meng R, Lv P, Yang Y, et al. Low-temperature alkali-modified fly ash as an effective adsorbent for removal of ammonia nitrogen, phosphorus and COD from the wastewater[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020, 569(1): 012026. [Google Scholar]
  17. Abdoli S, Asgari Lajayer B, Dehghanian Z, et al. A Review of the Efficiency of Phosphorus Removal and Recovery from Wastewater by Physicochemical and Biological Processes: Challenges and Opportunities[J]. Water, 2024, 16(17): 2507. [CrossRef] [Google Scholar]
  18. Nguyen D D, Ngo H H, Guo W, et al. Can electrocoagulation process be an appropriate technology for phosphorus removal from municipal wastewater? [J]. Science of the total Environment, 2016, 563: 549–556. [CrossRef] [Google Scholar]
  19. Hu B, Qi Q, Li L, et al. Study on Fe-C-Al three-phase micro-electrolysis treatment of low concentration phosphorus wastewater[J]. Water Science & Technology, 2022, 86(10): 2581–2592. [CrossRef] [PubMed] [Google Scholar]
  20. Jiang S, Cao Y, Han P, et al. Parameters optimization for eutrophic lake water treatment by a novel process of iron-carbon micro-electrolysis coupled with catalytic ozonation using response surface methodology[J]. Water Supply, 2021, 21(5): 2414–2424. [CrossRef] [Google Scholar]
  21. Yi Z, Shibin X, Dandan K, et al. Phosphorus removal from domestic sewage by adsorption combined photocatalytic reduction with red mud[J]. Desalination and Water Treatment, 2013, 51(37-39): 7130–7136. [CrossRef] [Google Scholar]
  22. Mao Y, Xiong R, Gao X, et al. Analysis of the status and improvement of microalgal phosphorus removal from municipal wastewater[J]. Processes, 2021, 9(9): 1486. [CrossRef] [Google Scholar]
  23. Du J, Waite T D, Feng J, et al. Coupled electrochemical methods for nitrogen and phosphorus recovery from wastewater: a review[J]. Environmental Chemistry Letters, 2023, 21(2): 885–909. [CrossRef] [Google Scholar]
  24. Parasana N, Shah M, Unnarkat A. Recent advances in developing innovative sorbents for phosphorus removal—perspective and opportunities[J]. Environmental Science and Pollution Research, 2022, 29(26): 38985–39016. [CrossRef] [PubMed] [Google Scholar]
  25. Ghimire U, Sarpong G, Gude V G. Transitioning wastewater treatment plants toward circular economy and energy sustainability[J]. ACS omega, 2021, 6(18): 11794–11803. [CrossRef] [PubMed] [Google Scholar]
  26. Alprol A E, Mansour A T, Ibrahim M E E D, et al. Artificial intelligence technologies revolutionizing wastewater treatment: Current trends and future prospective[J]. Water, 2024, 16(2): 314. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.